We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI to Improve Accuracy and Safety of Brain Disease Treatment with Focused Ultrasound

By HospiMedica International staff writers
Posted on 28 Dec 2023

Focused ultrasound technology represents a groundbreaking, non-invasive approach to targeting and treating several millimeters of brain tissue, even in its deepest regions, without the need for surgical incisions. More...

This method has shown promise in managing stubborn neurological conditions such as depression and Alzheimer's disease by minimizing damage to adjacent healthy tissue and reducing adverse effects like complications and infections. However, its wider adoption has been hindered by challenges in real-time adjustment for the ultrasound wave distortions caused by the unique contours of each patient's skull. Researchers have now made a significant breakthrough by creating a real-time acoustic simulation technology powered by generative AI, designed to predict and instantly correct any misalignment in the ultrasound focus due to skull distortion during therapy.

Currently, navigation systems based on pre-treatment medical images are used to estimate the invisible acoustic focus's position, which provides details of the relative orientation of the patient and the ultrasound transducer. Yet, these systems can falter as they cannot compensate for the skull-induced ultrasound wave distortions, and while various simulation methods have been tried to offset this limitation, they are typically too time-consuming for practical clinical use. Addressing this gap, a research team from the Korea Institute of Science and Technology (KIST, Seoul, South Korea) has innovated a real-time focused ultrasound simulation technology using a generative adversarial neural network (GAN), a deep learning model widely used for medical image generation. This AI-driven solution dramatically slashes the update time for three-dimensional simulation data reflecting changes in ultrasound waves from 14 seconds to a swift 0.1 seconds. Impressively, it maintains an average maximum acoustic pressure error under 7% and a focal position error below 6mm, both within the acceptable error margins of existing simulation methods, thereby enhancing its clinical viability.

Additionally, the researchers developed a medical image-based navigation system to validate the new technology's effectiveness, aiming for swift integration into actual clinical settings. This innovative system can provide real-time acoustic simulations at a rate of 5 Hz, depending on the ultrasound transducer's placement. It has successfully demonstrated real-time prediction of the ultrasound energy and focus points within the skull during therapy. Previously, due to extensive computation times, precise pre-planning was crucial for positioning the ultrasound transducer to utilize simulation insights effectively. However, with this cutting-edge simulation-guided navigation system, clinicians can now dynamically adjust the ultrasound focus in real-time, relying on the instant simulation feedback. Going forward, this advancement is poised to not only enhance the precision of focused ultrasound treatments but also to ensure safer patient care by rapidly adapting to any unforeseen issues arising during the procedure.

"As the accuracy and safety of focused ultrasound brain disease treatment has been improved through this research, more clinical applications will emerge," said KIST’s Dr. Kim, Hyungmin who led the research team. "For practical use, we plan to verify the system by diversifying the ultrasound sonication environment, such as multi-array ultrasound transducers."

Related Links:
KIST


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Portable Jaundice Management Device
Nymphaea
Morcellator
TCM 3000 BL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.