Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Portable Scanner Uses New Radiation-Free Imaging Technology to Provide Deeper Insights

By HospiMedica International staff writers
Posted on 27 Jul 2023

Imaging techniques like computed tomography, magnetic resonance imaging, positron emission tomography, and ultrasound have become invaluable tools in medicine. More...

Each method provides unique insights into the human body, enabling physicians to identify abnormalities or evaluate functional processes. However, radiation and radioactive materials used for imaging in medical settings can be harmful to human health. There are possible short-term and long-term risks from the very low doses of radiation exposure from imaging procedures. Now, a team of physicists has successfully readied a new, radiation-free imaging technique that does not require radioactive markers for use on humans.

A team of physicists and medical doctors from the University of Würzburg (Würzburg, Germany) has managed to make a radiation-free imaging technology, Magnetic Particle Imaging (MPI), suitable for human use. As the name suggests, MPI is based on the direct visualization of magnetic nanoparticles, which do not occur naturally in the human body and must be administered as markers. Unlike positron emission tomography, which relies on the detection of gamma rays from a radioactive marker, MPI operates on the response signal of the magnetic nanoparticles to changing magnetic fields over time. During this process, the magnetization of the nanoparticles is specifically manipulated using external magnetic fields, enabling the detection of not only their presence but also their spatial position within the human body.

The scientists have succeeded in implementing the novel concept in an MPI scanner (interventional Magnetic Particle Imaging - iMPI) specifically designed for intervention. The newly-developed portable scanner can visualize dynamic processes within the human body, like blood flow, among other things. The team demonstrated the scanner’s impressive mobility through real-time measurement by comparing it simultaneously with a specialized X-ray device, the standard instrument used in angiography in university hospitals. The measurements were performed on a realistic vascular phantom and the initial images were evaluated. In addition to conducting further exciting measurements with the iMPI device, the physicists are now focused on refining their scanner to further enhance the image quality.

"As with positron emission tomography, which relies on the administration of radioactive substances as markers, this method has the great advantage of being sensitive and fast without 'seeing' interfering background signals from tissue or bone," explained Professor Volker Behr from the University's Institute of Physics.

"This is a first important step towards radiation-free intervention. MPI has the potential to change this field for good," said Dr. Stefan Herz, senior author.

Related Links:
University of Würzburg 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Medical Monitor
VITALMAX 4100SL
Imaging Table
Stille imagiQ2
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.