Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI-Enabled 'Future' FDG-PET Brain Scans Predict Brain Changes in Alzheimer Patients

By HospiMedica International staff writers
Posted on 05 Jul 2023

Previous research has shown that artificial intelligence (AI) can predict clinical symptomatic changes in neuropsychiatric disorders based on baseline neuroimaging data. More...

However, successful studies predicting actual longitudinal changes in the entire brain are relatively few compared to those focusing on specific longitudinal alterations like hippocampal volume. Now, a preliminary study indicates that a deep learning-based algorithm can accurately predict brain development up to six years following an initial Alzheimer’s disease assessment via FDG-PET scans.

Researchers at the German Center for Neurodegenerative Diseases (DZNE, Göttingen, Germany) employed a convolutional neural network (CNN) to train an algorithm on the first two FDG-PET scans to predict the third scan acquired in elderly (>+ 55 years) participants, who received FDG-PET imaging in three consecutive years. The algorithm successfully predicted the overall future FDG-PET signal for the entire brain—namely, the metabolic reduction, which indicates neuronal activity. The tool was also capable of anticipating a future signal decline, or metabolic reduction, reflecting a loss of neuronal activity.

The algorithm's capabilities could be extended to predict FDG-PET outcomes up to six years following the initial scan, by sequentially using model output as input for subsequent-year predictions. Additionally, the tool seemed to detect ongoing neurodegenerative processes at baseline as it predicted a significant signal decline in year 2 in Alzheimer’s disease (AD) patients, especially in AD-prone regions such as the bilateral inferior temporal and parietal regions, and the posterior cingulate cortex. Possessing a tool that forecasts longitudinal FDG-PET scans based on scans obtained at baseline and one year later could enhance patient care. This study explores new territory, as the prediction of longitudinal metabolic changes in the brain, as measured by FDG-PET, has rarely been examined before.

“Such an algorithm would allow physicians to read an anticipated ‘future’ FDG-PET brain scan as they would in their normal routine, but years in advance,” said Elena Doering, a Ph.D. student at DZNE. “We hope that our work can provide clinical benefit in two ways: improving early diagnosis or providing reliable prognosis; and allowing individual prediction of brain pathological changes over time.”

Related Links:
DZNE 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Newborn Hearing Screener
ALGO 7i
Pulmonary Ventilator
OXYMAG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.