Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Device Enables Non-Invasive and Safe Ultrasound Brain Treatments

By HospiMedica International staff writers
Posted on 29 Mar 2022

Current approaches in ultrasound-based therapies for the brain are focusing ultrasound waves to reach their specific target in the brain. More...

For example, ultrasound waves are currently being used in clinical trials to treat epilepsy. But this has proven difficult, as ultrasound tends to bounce around within the skull, which leads to some areas of the brain being over-exposed while others are not exposed enough. In worst-case scenarios, this can cause hemorrhage and overheating in brain tissue. Now, a team of engineers has developed a device that is a first step to enabling noninvasive, ultrasound-based therapies for the brain.

Researchers at the UC San Diego Jacobs School of Engineering (La Jolla, CA, USA) developed the device by attempting a different approach: diffusing ultrasound waves instead of focusing them. They accomplished this by placing a microscale diffuser on the transducer that produces the ultrasound waves. The device is built based on the Schroeder diffuser–the best sound diffuser mathematical models can provide. The diffuser is built with tiny pits that modulate how the ultrasound waves are emitted. Specifically, the diffuser ensures the waves are emitted in a staggered manner, which helps prevent the creation of echoes. The depths of the pits are calculated with the Schroeder diffuser model. This is the same math that is used to design concert halls so that every audience member can hear music perfectly.

The ultrasound waves are applied to cells that have been engineered to be more responsive to ultrasound stimuli. The cells are exposed to an adenovirus that causes them to form an ion channel called TRPA1 that is sensitive to ultrasound. Researchers showed that the device worked as intended first in a Petri dish with human embryonic kidney cells and neuron cells. The cells showed twice as high an activation in the TRPA1 channel with the diffuser than without. In addition, researchers used the diffuser with an ultrasound wave generator on mice. They found that the diffuser creates a uniform acoustic field in the skull cavity, ensuring that only the brain regions engineered to be sensitive to ultrasound were stimulated. Next steps include better understanding the way ultrasound waves stimulate cells and conducting broader in vivo studies.

“We can’t modify the inside of the skull,” said senior author Professor James Friend, in the Department of Mechanical and Aerospace Engineering at the University of California San Diego. “The only thing we could do was to change how the device that produces the sound works. By using a targeted approach for this delivery, we can use uniformly distributed ultrasound instead of focused ultrasound.”

“The idea behind sonogenetics is to engineer cells to be more responsive to ultrasound stimuli,” said Aditya Vasan, a PhD student in Friend’s lab and the paper’s first author. “We do this by screening for proteins that respond to ultrasound stimulation at specific pressures and frequencies; and by genetically engineering specific brain regions to express these proteins."

“One of the goals with sonogenetics is to control which cells respond: think of it as a knob that controls lights that you have accurate control over,” added Vasan. “Ultimately, we want to show that sonogenetics work in people.”

Related Links:
University of California San Diego 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
X-Ray System
Leonardo DR mini III
Medical Monitor
SILENIO D
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.