Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




First-Ever Breast Cancer AI for Mammography Scans Shows How It Comes To Conclusions

By HospiMedica International staff writers
Posted on 27 Jan 2022

A new artificial intelligence (AI) tool for mammography scans aims to aid rather than replace human decision-making. More...

Computer engineers and radiologists at Duke University (Durham, NC, USA) have developed an AI platform to analyze potentially cancerous lesions in mammography scans to determine if a patient should receive an invasive biopsy. But unlike its many predecessors, this algorithm is interpretable, meaning it shows physicians exactly how it came to its conclusions.

The researchers trained the AI to locate and evaluate lesions just like an actual radiologist would be trained, rather than allowing it to freely develop its own procedures, giving it several advantages over its “black box” counterparts. It could make for a useful training platform to teach students how to read mammography images. It could also help physicians in sparsely populated regions around the world who do not regularly read mammography scans make better health care decisions.

The researchers trained the new AI with 1,136 images taken from 484 patients at Duke University Health System. They first taught the AI to find the suspicious lesions in question and ignore all of the healthy tissue and other irrelevant data. Then they hired radiologists to carefully label the images to teach the AI to focus on the edges of the lesions, where the potential tumors meet healthy surrounding tissue, and compare those edges to edges in images with known cancerous and benign outcomes. Radiating lines or fuzzy edges, known medically as mass margins, are the best predictor of cancerous breast tumors and the first thing that radiologists look for. This is because cancerous cells replicate and expand so fast that not all of a developing tumor’s edges are easy to see in mammograms.

After training was complete, the researches put the AI to the test. While it did not outperform human radiologists, it did just as well as other black box computer models. When the new AI is wrong, people working with it will be able to recognize that it is wrong and why it made the mistake. Moving forward, the team is working to add other physical characteristics for the AI to consider when making its decisions, such as a lesion’s shape, which is a second feature radiologists learn to look at.

“This is a unique way to train an AI how to look at medical imagery,” said Alina Barnett, a computer science PhD candidate at Duke and first author of the study. “Other AIs are not trying to imitate radiologists; they’re coming up with their own methods for answering the question that are often not helpful or, in some cases, depend on flawed reasoning processes.”

Related Links:
Duke University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gynecological Examination Chair
arco-matic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.