We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




PET Helps Quantify Cancer Immunotherapy Target Engagement

By HospiMedica International staff writers
Posted on 10 Apr 2019
A new study suggests positron emission tomography (PET) scans can be used to calculate engagement and tumor-residence kinetics of antibody therapeutics.

Researchers at Johns Hopkins University School of Medicine (JHU-SOM; Baltimore, MD, USA), Memorial Sloan-Kettering Cancer Center (MSKCC; New York, NY, USA), and other institutions developed a radiolabeled peptide that binds to programmed death ligand-1 (PD-L1), in order to study the mechanism of interaction between the checkpoint protein and the antibody therapeutics atezolizumab, avelumab, and durvalumab; how they are expressed in different tumors; and how efficiently and quickly they bind to PD-L1 receptors at the tumor using PET imaging.

The researchers found that both PD-L1–targeted monoclonal antibody drugs, and a high-affinity PD-L1–binding peptide called WL12 have common interaction sites on PD-L1. More...
Using the peptide radiotracer [64Cu]WL12 and PET imaging demonstrated that variable PD-L1 expression and its saturation by antibody therapeutics can be quantified. Next, they used the radiotracer to evaluate the impact of time and dose on the unoccupied fraction of tumor PD-L1; using mathematical modeling, they calculated the antibody therapeutic doses needed to achieve therapeutically effective occupancy (defined as over 90%). The study was published in the February 2019 issue of the Journal of Clinical Investigation.

“This approach offers a vital step toward directly measuring how well immunotherapy drugs are able to engage a tumor in any given person, and give us some insight about how to optimize further treatments by increasing the dose or substituting other drugs or therapies more quickly,” said senior author professor of radiology Sridhar Nimmagadda, PhD, of JHU-SOM. “Its use could streamline cancer therapy by enhancing doctors' ability to tailor therapy, help determine the therapeutic dose of a drug, and avoid or stop treatments that are not effective.”

Checkpoint inhibitors are designed to help the immune system recognize cancer cells as dangerous and target them for destruction. Tumors often hijack these natural protective systems, thus allowing them to masquerade as healthy tissues. PD-L1 is one such checkpoint target, and it is currently the backbone of immune checkpoint therapies.

Related Links:
Johns Hopkins University School of Medicine
Memorial Sloan-Kettering Cancer Center


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Infrared Digital Thermometer
R1B1
Gold Member
Electrode Solution and Skin Prep
Signaspray
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.