Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Can Distinguish Brain Tumors from Healthy Tissue

By HospiMedica International staff writers
Posted on 22 Nov 2024

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. More...

AI holds particular promise in radiology, where delays in processing medical images can often postpone patient care. Convolutional neural networks (CNNs) are robust tools used to train AI models on large image datasets to identify and classify images. This enables the networks to “learn” to distinguish between different types of images. Furthermore, CNNs also have the ability for “transfer learning,” allowing models trained for one task to be applied to similar new tasks. AI models have already demonstrated the ability to identify brain tumors in MRI images with near-human accuracy. Now, in a new study, researchers have shown that AI models can be trained to differentiate between brain tumors and healthy tissue.

While detecting camouflaged animals and classifying brain tumors may seem unrelated, the researchers from Boston University (Boston, MA, USA) saw a connection between the natural camouflage of animals and the way cancerous cells blend with surrounding healthy tissue. The ability to generalize — the process of categorizing various items under a common identity — is crucial for the AI model to detect camouflaged objects. This capability could be particularly advantageous for detecting tumors. In their retrospective study using publicly available MRI data, the researchers explored how neural networks could be trained using brain cancer imaging data, incorporating a unique camouflage detection step to enhance the networks' tumor detection capabilities.

The researchers utilized MRIs from public repositories of both cancerous and healthy brain scans to train the networks to identify cancerous areas, distinguish them from healthy tissue, and classify the type of cancer. The results, published in Biology Methods and Protocols, showed that the networks performed nearly flawlessly at detecting healthy brain scans, with only 1-2 false negatives, and were also able to differentiate between cancerous and non-cancerous brains. One of the networks achieved an accuracy of 85.99% in detecting brain cancer, while the other reached 83.85%. An important feature of these networks is their ability to explain their decisions, which can increase the trust that both medical professionals and patients place in the AI models. This transparency is particularly valuable, as deep learning models are often criticized for their lack of interpretability. The network was capable of generating images that highlighted specific areas in its classification of tumor-positive or tumor-negative scans, which would allow radiologists to verify the AI's findings, serving almost as a second opinion in radiology.

Going forward, the researchers believe that developing deep network models with decisions that are easy to explain will be crucial for AI to play a transparent and supportive role in clinical settings. While the networks performed less effectively when distinguishing between different types of brain cancer, the study demonstrated that they exhibited distinct internal representations. The accuracy and clarity of the networks improved as they were trained using camouflage detection. Transfer learning increased the networks' accuracy, and while the best performing model was about 6% less accurate than standard human detection, the research successfully highlights the improvements in accuracy brought about by this training approach. The researchers argue that, when combined with methods to explain the network’s decisions, this approach will foster the transparency needed for future AI applications in clinical settings.

“Advances in AI permit more accurate detection and recognition of patterns,” said the paper’s lead author, Arash Yazdanbakhsh. “This consequently allows for better imaging-based diagnosis aid and screening, but also necessitate more explanation for how AI accomplishes the task. Aiming for AI explainability enhances communication between humans and AI in general. This is particularly important between medical professionals and AI designed for medical purposes. Clear and explainable models are better positioned to assist diagnosis, track disease progression, and monitor treatment.”


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Newborn Hearing Screener
ALGO 7i
Radiology System
Riviera SPV AT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.