Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Tool Accurately Predicts Stroke Outcomes After Arterial Clot Removal Using CTA Scans

By HospiMedica International staff writers
Posted on 05 Sep 2024

In current stroke treatment protocols, advanced imaging techniques, particularly Computed Tomography Angiography (CTA), play a vital role in determining the management strategy for Large Vessel Occlusion (LVO). More...

CTA is critical not only for assessing patient eligibility for treatment but also for evaluating the arterial collateral supply and predicting the prognosis of functional stroke outcomes. It is known to be more sensitive than non-contrast Computed Tomography (CT) in identifying early signs of infarction. Additionally, recent research has demonstrated CTA's utility in long-term prognostication. The advent of artificial intelligence (AI) has introduced innovative models capable of predicting long-term outcomes based on initial stroke imaging. These models extract prognostic data directly from CTA scans taken upon admission, providing forecasts of patient outcomes. Now, a novel deep learning model can accurately predict post-surgical outcomes for patients with LVO stroke based on their initial CTA scans.

A research team led by Yale School of Medicine (New Haven, CT, USA) utilized patient data from thrombectomies performed between 2014 and 2020 to train three distinct models using admission CTA scans. These models also considered variables such as time to surgery, age, sex, and NIH stroke scale scores. This research culminated in a fully automated deep learning model that can accurately determine stroke outcomes from admission imaging and various treatment scenarios, achieving a 78% accuracy rate in independent validation. According to the researchers, this tool facilitates rapid and accurate decision-making by establishing a 'treatment trigger' that could initiate the treatment sequence following surgery. The findings from this study were published in the journal Frontiers in Artificial Intelligence.

"The deep learning model developed by our research team is the first step toward intelligent machinization of stroke neuroimaging protocol," said Sam Payabvash, M.D., Associate Professor of Radiology and Biomedical Imaging and senior author of the study. "It’s worth noting that the model can solely rely on CT angiography scans of the brain, which are invariably present at the time of stroke diagnosis. Therefore, our model based on imaging information can provide rapid, objective predictions regardless of local expertise and other variabilities, guiding treatment in resource challenged communities.”

Related Links:
Yale School of Medicine


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
External Defibrillator
HeartSave Y | YA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.