Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Ultrasound Beam Triggers ‘Nanodroplets' For Targeted Drug Delivery

By HospiMedica International staff writers
Posted on 21 Jun 2024

Traditional methods of drug delivery are often inefficient and imprecise, dispersing medication throughout the body, including in areas where it’s not needed and may even be harmful. More...

Achieving targeted delivery could significantly reduce the necessary dosage and minimize side effects. Scientists have now refined an emerging technique that achieves targeted drug delivery, making it safe and efficient for the first time and setting the stage for potential human trials.

Scientists at the University of Utah (Salt Lake City, UT, USA) have developed a technique that employs ultrasound waves to release drugs from nanocarriers at specific body sites. These nanocarriers are tiny, ranging from 470 to 550 nanometers in diameter, and consist of a hollow polymer shell. The shell’s polymers are designed with two ends: a 'hydrophilic' end that is compatible with water and faces outward, and a 'hydrophobic' end that repels water and faces inward. Enclosed within this shell is a core made up of hydrophobic perfluorocarbons, which are primarily composed of fluorine and carbon, mixed with a hydrophobic drug. This design prevents the cores from coalescing into a single droplet and forms a barrier against the immune system.

To trigger drug release, the team used ultrasound waves at frequencies of 300 or 900 kilohertz, which are beyond human hearing. The ultrasound beam can be precisely directed to target areas within the body that are just a few millimeters in size. It is believed that the ultrasound causes the perfluorocarbons within the nanocarriers to expand, stretching the droplet’s shell and increasing its permeability, allowing the drug to diffuse to the targeted organs, tissues, or cells. The effectiveness of the drug delivery was tested using the anesthetic propofol with different perfluorocarbons: perfluoropentane (PFP), decafluoropentane (DFP), and perfluorooctylbromide (PFOB).

The testing involved delivering ultrasound to the nanodroplets in vitro in 60 pulses of 100 milliseconds each over a minute. The results indicated that PFOB cores offered an optimal balance between droplet stability and delivery efficiency. For safety assessment, the researchers administered six doses of PFOB-based nanodroplets to a long-tailed macaque at weekly intervals, monitoring a series of blood biomarkers to track liver, kidney, and immune function. The study's results, which were published on June 19 in the journal Frontiers in Molecular Biosciences, confirmed that the nanodroplets were well tolerated and did not produce detectable side effects.

“Here we show a method to deliver drugs to specific areas of the body where they are needed. We do so using ultrasound waves, which trigger drug release from circulating nanocarriers when focused on the target,” said Matthew G Wilson, a graduate research assistant at the University of Utah, and the study’s first author. “We developed a method to produce stable nanocarriers repeatably, and identified ultrasound parameters that can activate them.”

Related Links:
University of Utah


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
X-Ray Meter
Cobia SENSE
Gynecological Examination Chair
arco-matic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.