We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Artificial Intelligence Tool Enhances Usability of Medical Images

By HospiMedica International staff writers
Posted on 14 Jun 2024

Doctors use myocardial perfusion imaging (MPI) single-photon emission computed tomography (SPECT) images to evaluate blood flow to the heart muscle. More...

To capture these images, patients are administered a dose of radioactive tracer and must remain still for up to 15 minutes during the scanning process. Reducing the dose of the tracer or the duration of the scan would be advantageous for patients, as it would streamline the procedure and reduce imaging costs. However, such reductions can also compromise the image quality, particularly in terms of visualizing cardiac defects, which is the primary clinical purpose of these images. Now, a deep-learning-based image denoising method has been developed that could enhance the detection of myocardial defects in low-count SPECT scans.

The tool developed by researchers at Washington University in St. Louis (St. Louis, MO, USA) for denoising MPI SPECT images demonstrates the potential to improve performance on clinical tasks. Drawing on insights into the human visual system, the team devised a deep-learning-based strategy tailored for denoising low-count MPI SPECT images, effectively improving their quality. The tool, named DEMIST, uses a deep learning framework to selectively refine MPI SPECT images, ensuring the preservation of essential features critical for detection tasks.

The effectiveness of DEMIST was evaluated using anonymized clinical data from 338 patients who underwent MPI procedures on two different scanners. The results demonstrated that DEMIST outperformed both the original low-dose scans and a widely-used task-agnostic denoising method in detecting cardiac defects. The denoised images by DEMIST significantly improved the detection of cardiac defects according to a model observer. This improvement was consistent across various patient demographics, including both male and female patients, and across different types of cardiac defects. It was also effective with data obtained from two distinct scanners. Further mathematical analysis confirmed that DEMIST effectively retained features vital for detection tasks, thereby boosting observer performance.

“These results provide evidence for future clinical evaluation of DEMIST's potential to denoise MPI SPECT images,” said biomedical engineer Abhinav Jha who led the research at WUSTL. “I am excited about these findings since we are seeing that AI may have the potential to enhance the usability of medical images. By providing the possibility to reduce radiation dose and acquisition time, DEMIST offers possibilities to enhance the accuracy and efficiency of detecting myocardial perfusion defects, ultimately benefiting patient care and treatment outcomes.”

Related Links:
WUSTL


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Enteral Feeding Pump
SENTINELplus
OR Table Accessory
Angular Accessory Rail
X-Ray Meter
Cobia SENSE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.