Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New AI Tool Accurately Detects Six Different Cancer Types on Whole-Body PET/CT Scans

By HospiMedica International staff writers
Posted on 13 Jun 2024

Automatic detection and characterization of cancer are crucial for initiating early treatment. More...

The majority of artificial intelligence (AI) models designed to detect cancer rely on datasets that are either small or moderate in size and typically focus on a single type of cancer and/or radiotracer. This limitation is a significant bottleneck in the existing training and evaluation methods used for AI in medical imaging and radiology. Now, a novel AI method has been shown to accurately identify six different types of cancer in whole-body PET/CT scans. This tool also automatically quantifies tumor burden, which can help in assessing patient risk, predicting responses to treatment, and estimating survival probabilities.

At the Johns Hopkins University School of Medicine (Baltimore, MD, USA), researchers have developed a deep transfer learning technique (a form of AI) for the fully automated segmentation of tumors and prognosis using whole-body PET/CT scans. The study analyzed data from 611 FDG PET/CT scans of patients with lung cancer, melanoma, lymphoma, head and neck cancer, and breast cancer, in addition to 408 PSMA PET/CT scans from prostate cancer patients. This AI method automatically extracted radiomic features and whole-body imaging metrics from the predicted tumor segmentations to quantify molecular tumor burden and uptake across all studied cancer types.

These quantitative features and imaging metrics were then utilized to construct predictive models that proved to be useful for risk stratification, estimating survival, and predicting treatment response in cancer patients. The researchers expect that in the near future, generalizable and fully automated AI tools will significantly contribute in imaging centers by supporting physicians in the interpretation of PET/CT scans for cancer patients. Furthermore, this deep learning approach could unveil significant molecular insights into the biological processes that are currently under-researched in large patient cohorts.

“In addition to performing cancer prognosis, the approach provides a framework that will help improve patient outcomes and survival by identifying robust predictive biomarkers, characterizing tumor subtypes, and enabling the early detection and treatment of cancer,” said Kevin H. Leung, PhD, research associate at Johns Hopkins University School of Medicine. “The approach may also assist in the early management of patients with advanced, end-stage disease by identifying appropriate treatment regimens and predicting response to therapies, such as radiopharmaceutical therapy.” The study's findings were presented at the 2024 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMI).

Related Links:
Johns Hopkins University School of Medicine


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Infrared Digital Thermometer
R1B1
Isolation Stretcher
IS 736
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.