Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New AI Tool Detects Possible Metastatic Breast Cancer by Improving MRI Sensitivity

By HospiMedica International staff writers
Posted on 28 May 2024

Most breast cancer-related deaths are attributed to metastatic disease, with the initial site of metastasis often being an axillary lymph node. More...

Accurately determining the nodal status is crucial for guiding treatment choices; however, traditional imaging methods alone lack the sensitivity required to definitively exclude axillary metastasis. Consequently, patients frequently need to undergo invasive procedures involving the injection of radioisotopes and dyes, followed by surgery to extract and examine the axillary nodes for the presence of cancer cells. Now, a pioneering artificial intelligence (AI) model that utilizes standard magnetic resonance imaging (MRI) along with machine learning, can identify axillary metastasis—the spread of cancer cells to the lymph nodes under the arms. This noninvasive approach has the potential to enhance the detection of breast cancer metastasis, potentially reducing the need for needle or surgical biopsies.

In a retrospective analysis, researchers at UT Southwestern Medical Center (Dallas, TX, USA) evaluated dynamic contrast-enhanced breast MRI scans from 350 breast cancer patients who had recently been diagnosed and whose nodal status was known. These images, combined with various clinical data, were employed to train the AI model to detect axillary metastasis using machine learning techniques. The results showed that the AI model was significantly more effective at identifying patients with axillary metastasis than either MRI or ultrasound. In practical application, this AI model could have prevented 51% of benign (noncancerous) or unnecessary surgical sentinel node biopsies while accurately identifying 95% of patients with axillary metastasis.

This model, being an adjunct to standard imaging techniques, also has the potential to alleviate the stress and financial burden of further tests for many patients. This study is part of ongoing efforts at UT Southwestern to enhance breast cancer imaging and develop predictive tools for detecting metastasis. The researchers are now focusing on further improving the image analysis process and aim to incorporate a broader array of data to confirm their results.

“That’s an important advancement because surgical biopsies have side effects and risks, despite having a low probability of a positive result confirming the presence of cancer cells,” said study leader Basak Dogan, M.D., at UT Southwestern “Improving our ability to rule out axillary metastasis during a routine MRI – using this model – can reduce that risk while enhancing clinical outcomes.” The findings of the study were published in the journal Radiology: Imaging Cancer on April 12, 2024. 

Related Links:
UT Southwestern Medical Center


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
OR Table Accessory
Angular Accessory Rail
Medical Monitor
SILENIO D
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.