Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

By HospiMedica International staff writers
Posted on 27 Mar 2024

Approximately 13% of U. More...

S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American Cancer Society. Mammography screening remains a vital tool for early breast cancer detection, offering the most effective treatment window. Regular mammogram appointments can significantly reduce breast cancer mortality risks. Nonetheless, the challenge remains in accurately predicting which individuals will contract breast cancer solely through screening methods. Mirai, an advanced deep learning algorithm, has been recognized for its ability to predict breast cancer risk, although its decision-making process remains largely unexplained, creating risks of overreliance and misdiagnoses by radiologists. Now, researchers have developed an innovative, interpretable artificial intelligence (AI) model capable of predicting the five-year risk of breast cancer based on the analysis of mammograms.

In the study, researchers at Duke University (Durham, NC, USA) conducted a comparative study utilizing their newly devised deep learning model, dubbed AsymMirai, against Mirai's one to five-year breast cancer risk assessments. AsymMirai inherits its deep learning "front end" from Mirai but incorporates an interpretable module called local bilateral dissimilarity, focusing on the tissue contrast between the left and right breasts. This study analyzed 210,067 mammograms from 81,824 patients from the EMory BrEast imaging Dataset (EMBED) spanning from January 2013 to December 2020, employing both the Mirai and AsymMirai algorithms.

The findings revealed that the simplified deep learning model, AsymMirai, nearly matched the performance of the state-of-the-art Mirai algorithm in predicting breast cancer risk from one to five years. Moreover, this study highlighted the significance of bilateral asymmetry as a vital clinical indicator, suggesting its potential as a novel imaging marker for assessing breast cancer risk. The transparency behind AsymMirai's decision-making process makes it an invaluable tool for radiologists, enhancing the accuracy of breast cancer diagnosis and risk prediction.

"We can, with surprisingly high accuracy, predict whether a woman will develop cancer in the next 1 to 5 years based solely on localized differences between her left and right breast tissue," said the study's lead author, Jon Donnelly, B.S., a Ph.D. student in the Department of Computer Science at Duke University. "This could have public impact because it could, in the not-too-distant future, affect how often women receive mammograms."

Related Links:
Duke University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Ultrasound System
FUTUS LE
Newborn Hearing Screener
ALGO 7i
External Defibrillator
HeartSave Y | YA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.