We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

By HospiMedica International staff writers
Posted on 18 Mar 2024

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. More...

It can display molecular and structural details inside the body in real time without using ionizing radiation. This feature makes it promising for enhancing medical diagnoses by offering a variety of physiological and histological details, leading to more accurate and safer patient care. However, integrating optical and ultrasound pathways often reduces the efficiency of traditional ultrasound transducers. Thus, developing a transducer that is capable of simple and seamless integration is vital for its real-world application. Researchers have now tackled these issues faced in conventional ultrasound-photoacoustic systems by developing a high-performing, transparent ultrasonic transducer (TUT).

An ultrasound transducer either transmits or receives ultrasound. Conventional ultrasound transducers are made of several opaque layers to optimize acoustic performance, but this design cannot be seamlessly integrated into light pathways. This restriction reduces the effectiveness of both the optical and ultrasound systems. Although recent studies have investigated the use of transparent materials for TUTs to solve this problem, finding a balance between transparency and optimal acoustic performance across the transducer layers remains a challenge. In new research conducted at Pohang University of Science and Technology (POSTECH, Pohang, South Korea), the researchers demonstrated a transparent material made from a mix of silicon dioxide (SiO2) and epoxy, which they used to create the novel TUT.

This cutting-edge TUT demonstrates remarkable optical clarity (over 80%) and maintains the same bandwidth (±30% at the center frequency) as conventional opaque ultrasound transducers. When used in the ultrasound-photoacoustic dual-modal system, the novel TUT achieved depth-to-resolution ratios exceeding 500 for ultrasound imaging and 370 for photoacoustic imaging—rates three to six times greater than previous photoacoustic systems. Importantly, this study surpasses the traditional depth-to-resolution ratio limit of 200 in photoacoustic research, reaching 370. Furthermore, this imaging system successfully performed detailed structural and functional imaging in live animals and humans, indicating its broad application potential.

"The application of this technology extends across various medical devices, encompassing tasks like using light stimulation for cell manipulation, employing laser surgery for tumor removal, and employing ultrasound for the examination of residual tissue,” said POSTECH Professor Chulhong Kim. “Our aspiration is that this research will be beneficial in diverse fields, including those employing ultrasound and optical sensors such as mobile devices and robotics."

Related Links:
POSTECH


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Isolation Stretcher
IS 736
Morcellator
TCM 3000 BL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.