Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

By HospiMedica International staff writers
Posted on 14 Mar 2024

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. More...

Static scans happen 60 minutes after the dye is administered into the body, showing where the dye collects using something called standard uptake values (SUVs). This method is popular but sometimes cannot tell the difference between cancerous lung spots and non-cancerous ones, like inflammation. On the other hand, dynamic PET scans take pictures over a longer time and let doctors measure "kinetic rate constants," which are details about how the dye moves in spots over time. This method is usually better at spotting cancer accurately but takes longer, which can be hard for patients who get anxious or can't stay still for long. Now, a new study has found that carrying out dynamic PET scans in just 30 minutes, instead of the usual 65 minutes, could work just as well for checking lung lesions, making it easier for patients.

Using image reconstruction analysis, nuclear medicine researchers from the Chinese Academy of Medical Sciences (Shenzhen, China) examined if shorter, 30-minute dynamic scans were just as good in terms of picture quality and how well they could tell apart benign and malignant lung lesions. They looked at 146 patients who had 181 lung lesions, and used software to turn the scans into 28 frames, showing the dye's movement over 30 minutes or 65 minutes. Experts looking at the images found that the shorter, 30-minute scans were just as good as the longer ones. They also found that using both short and long scan times, they could accurately identify cancerous lung lesions 82% of the time. However, the challenge with using dynamic FDG-PET more widely in clinics is the long time it takes to do these scans, and finding the best time to get these images for different medical needs is still something that needs to be worked out.

“In terms of image quality, our study found that the quality of Ki-30 min images is as good as that of Ki-65 min images by visual quality assessment,” stated the researchers. “This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions.”

Related Links:
Chinese Academy of Medical Sciences


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Silver Member
ECG Management System
NEMS Web
Portable Jaundice Management Device
Nymphaea
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.