We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Focused Ultrasound Temporarily Opens Blood-Brain Barrier to Enable DNA Testing for Brain Tumors

By HospiMedica International staff writers
Posted on 28 Feb 2024

Biopsies play a crucial role in diagnosing and treating cancer, but when it comes to brain tumors, the process poses significant risks. More...

The need for drilling into the skull and the potential complications of removing brain tissue, such as bleeding, brain swelling, or infection, make brain tumor biopsies particularly challenging. However, recent developments in noninvasive diagnostic methods have marked a significant advancement. Researchers are now exploring the use of focused ultrasound to collect DNA from brain tumors, representing a groundbreaking shift in brain tumor diagnostics.

Normally, a biopsy requires physically removing tissue from the body for examination. Tumors often release fragments of their DNA into the bloodstream, which can be detected and analyzed through a liquid biopsy. This method is already used for some cancers, offering a noninvasive way to repeatedly sample tumor DNA. However, detecting DNA from brain tumors is complex due to the blood-brain barrier, a protective vascular network that restricts substances from entering or leaving the brain. The new sonobiopsy technique uses focused ultrasound to temporarily disrupt the blood-brain barrier, allowing small molecules, like tumor DNA, to pass into the bloodstream. This DNA can then be collected through a simple blood draw for analysis. The process involves microbubbles, FDA-approved contrast agents used in ultrasound imaging. These microbubbles react to focused ultrasound waves by expanding and contracting, exerting mechanical force on blood vessel walls, thereby enhancing the permeability of the blood vessels.

In a pioneering clinical trial led by Washington University in St. Louis, researchers tested a compact focused ultrasound device on five patients with high-grade gliomas before their scheduled brain surgeries. The sonobiopsy was performed directly on the brain tumor, followed by blood sample collection and tumor removal. The blood and tumor tissue were then analyzed to identify tumor-specific DNA sequences. The study revealed that sonobiopsy significantly increased the detection of tumor-specific DNA in the bloodstream in three of the five patients. For one patient, the amount of detectable tumor DNA nearly doubled. While not all patients showed increased DNA levels in their blood, this variation was anticipated. Importantly, there was no detectable tissue damage on the brain's surface or in the tumor tissue exposed to focused ultrasound, indicating the procedure's safety.

“We are still in the developmental stage of this technology, and our trial was designed to use the tumor tissue taken from the brain as a benchmark to determine if the DNA found in the bloodstream was shed from the tumor following the sonobiopsy procedure,” explained Eric Leuthardt, M.D., Shi Hui Huang Professor of Neurosurgery at Washington University School of Medicine. “After we fully validate our method, the ultimate goal is to use a sonobiopsy to noninvasively analyze lesions in the brain to understand their molecular and genetic makeup to guide treatment decisions.”

Related Links:
Washington University in St. Louis


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Isolation Stretcher
IS 736
OR Table Accessory
Angular Accessory Rail
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.