Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI System Combines CT Imaging with Clinical and Genetic Data for Early Lung Cancer Detection

By HospiMedica International staff writers
Posted on 20 Feb 2024

Lung carcinoma prognosis has evolved significantly with the discovery of molecular targets and their corresponding treatments. More...

Specifically, mutations in the Epidermal Growth Factor Receptor (EGFR) gene, found in lung carcinoma, serve as key targets for specialized therapies. However, in countries with limited resources like India, advanced testing methods such as next-generation sequencing remain inaccessible for widespread use. Challenges also include obtaining sufficient tissue from lung core biopsies and dealing with the inherent intratumoral heterogeneity that complicates the identification of suitable tumor tissues. Now, researchers have demonstrated that an AI-based system can automatically detect and analyze lung nodule features from CT images, predicting the likelihood of EGFR mutations. This innovation aids oncologists and patients in resource-limited settings by providing near-optimal care and guiding appropriate treatment decisions.

Previous studies leveraging AI with CT imaging have shown promise in categorizing and analyzing lung nodules without incurring additional costs. However, most of these methods have focused solely on nodule detection in CT images. Moreover, while AI has been used to extract comprehensive lung information for predicting EGFR genotype and evaluating responses to targeted lung cancer therapy, such efforts have predominantly been centered on White and Chinese populations. With a primary focus on the Indian population, researchers led by the Rajiv Gandhi Cancer Institute and Research Centre (New Delhi, India) set out to develop an AI-based strategy that could not only detect but also characterize lung nodules, indicating the EGFR mutational status in lung carcinoma patients. This would help triage patients requiring extensive molecular profiling of the EGFR-driver gene.

The team created a fully automated AI-based Predictive System (AIPS) using machine learning (ML) and deep learning (DL) algorithms. This system can detect lung nodule features from CT images and assess the probability of an EGFR mutation, thus eliminating the need for time-consuming image annotation by radiologists and complex feature engineering. In addition to incorporating EGFR gene sequencing and CT imaging data from 2277 lung carcinoma patients across three cohorts in India and a White population cohort from TCIA, the researchers used the LIDC-IDRI cohort to train the AIPS-Nodule (AIPS-N) model. This model automatically detects and characterizes lung nodules. The AIPS-N model's combination with clinical factors in the AIPS-Mutation (AIPS-M) model was evaluated for its effectiveness in predicting the EGFR genotype, achieving area under the curve (AUC) values ranging from 0.587 to 0.910. The AIPS-N successfully detected nodules with an average AP50 of 70.19% and predicted scores for five lung nodule properties. This research suggests that CT imaging combined with an automated lung-nodule analysis AI system can non-invasively and cost-effectively predict EGFR genotype, identifying patients with EGFR mutations.

Related Links:
Rajiv Gandhi Cancer Institute and Research Centre


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Newborn Hearing Screener
ALGO 7i
Infant Resuscitator
Easypuff
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.