We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Low-Frequency Ultrasound Improves Oxygen Saturation in Blood

By HospiMedica International staff writers
Posted on 29 Jan 2024

Ultrasound technology has a wide array of applications in the medical field. More...

It is used for breaking up kidney stones, destroying cancer cells, and more. Specifically, in the medical field, ultrasound operates at high frequencies, ranging from 2 to 12 MHz, for both diagnostic and therapeutic purposes. These high-frequency acoustic waves have a limited depth of penetration into the body, impacting external tissues more significantly than deeper internal organs. In contrast, low-frequency ultrasound waves can penetrate deeper, reaching internal organs with a more even distribution of sound pressure. Now, new research has revealed that low-frequency ultrasound can influence blood parameters, suggesting that the effect of ultrasound on hemoglobin could enhance oxygen transfer from the lungs to other tissues in the body.

This research involved the analysis of 300 blood samples collected from 42 patients with pulmonary conditions by scientists from Kaunas University of Technology (KUT, Kaunas, Lithuania) who exposed these samples to six distinct low-frequency ultrasound modes. They observed changes in 20 different blood parameters using blood analysis equipment. Additionally, artificial intelligence and machine learning algorithms were employed to predict the effects of ultrasound exposure on these samples. The study indicated that the influence of ultrasound on blood extends beyond just altering platelet count – it also impacts red blood cells (RBCs), which can lead to improved oxygen circulation and potentially lower blood pressure.

The research found that low-frequency ultrasound causes clumped RBCs to separate into individual RBCs. This dissociation allows hemoglobin molecules within RBCs to interact with oxygen across their entire surface area, which is more extensive than in aggregated RBCs, thereby enhancing the oxygen saturation in the blood. This decrease in the number of dissociated single RBCs per unit volume of blood, due to the spaces between individual cells compared to aggregates, leads to a decrease in blood viscosity and influences blood pressure. The scientists highlighted that the impact of ultrasound on the hemoglobin in RBCs was more significant than its effect on platelet aggregation, which is responsible for blood clotting.

“This means that low-frequency ultrasound can be potentially used for improving oxygen saturation in the lungs for pulmonary hypertension patients,” said KTU professor Vytautas Ostaševičius. “Keeping in mind the recent COVID-19 pandemic, we see a huge potential in exploring the possibilities of our technology further.”

Related Links:
Kaunas University of Technology


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Portable Jaundice Management Device
Nymphaea
Exam Table
PF400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.