We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Novel PET Tracer Enhances Lesion Detection in Medullary Thyroid Cancer

By HospiMedica International staff writers
Posted on 22 Jan 2024

Medullary thyroid cancer (MTC) represents about 3% of all thyroid cancer cases and is notably rare. More...

It arises from different cells compared to other thyroid cancers, necessitating distinct imaging and treatment approaches. The overexpression of the cholecystokinin-2 receptor (CCK-2R) on most MTC cells has led to the development of various compounds targeting this receptor. However, many of these compounds suffer from low metabolic stability, which hampers their effectiveness in radioligand therapy. Now, a newly developed PET imaging agent has shown promise in both preclinical and clinical studies for identifying MTC, suggesting its potential as a theranostic tool in clinical settings.

In a study conducted by researchers at Stanford University (Stanford, CA, USA), three compounds—DOTA-CCK-66, DOTA-CCK 66.2, and DOTA-MGS5—were each labeled with different isotopes: 64Cu, 67Ga, and 177Lu. The team evaluated the CCK-2R affinity of these radiolabeled compounds on MTC cells. All compounds displayed high affinity, but DOTA-CCK-66 was selected for further study due to its superior in vitro properties, leading to the exclusion of DOTA-CCK-66.2 from subsequent analyses.

Following this, the researchers carried out in vivo stability, biodistribution, imaging, and competition studies using mice with CCK-2R-expressing tumors. Based on its comprehensive in vitro and in vivo performance, 68Ga-DOTA-CCK-66 was chosen for a proof-of-concept PET/CT application. Subsequently, two MTC patients underwent 68Ga-DOTA-CCK-66 PET/CT scans. The scans revealed that the compound was well tolerated by the patients, exhibited favorable biodistribution, and demonstrated high activity accumulation in the tumors.

“Due to increased in vivo stability, our compound reveals favorable tumor uptake as well as an improved activity clearance from off-target tissues,” said Constantin Lapa, MD, director of nuclear medicine at University Hospital Augsburg. “This could result in enhanced lesion detection in PET imaging and additionally enable targeted MTC radioligand therapy.”

Related Links:
Stanford University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Radiology System
Riviera SPV AT
Xenon Light Source
CLV-S400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.