We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Targeted Therapy Delivers Radiation Directly To Cells in Hard-To-Treat Cancers

By HospiMedica International staff writers
Posted on 08 Jan 2024

Alpha-particle emitter radiopharmaceutical therapy (alpha-emitter RPT) is an emerging cancer treatment that has shown considerable success in targeting widespread, resistant cancer cells by directly delivering potent radiation. More...

Administered intravenously, this therapy involves attaching radioactive atoms, which emit alpha-particles or helium nuclei, to molecules specifically designed to bind with cancer cells scattered throughout the body. This targeted approach allows the alpha-particles to inflict substantial DNA damage to the cancer cells, effectively destroying them, while also minimizing harm to the surrounding healthy tissues and mitigating some of the severe side effects typically associated with radiation and chemotherapy.

In recent years, the FDA has approved several agents utilizing this method to deliver radiation therapies aimed at treatment-resistant cancers, sparking an increased demand to refine these treatments and explore new specific radiation therapies. Researchers at Johns Hopkins Medicine (Baltimore, MD, USA) who have previously established the efficacy of this therapy in managing various metastatic cancers that are unresponsive to standard treatments, are now set to further enhance the alpha-emitter RPT with a USD 15 million grant from the National Cancer Institute. Their focus will be on fine-tuning the therapy and customizing its use, including developing sophisticated imaging techniques and understanding the radiation's distribution in tissues to personalize treatment for each patient. The research team plans to delve into the mathematical and physics-based aspects of alpha-emitter RPT to address these challenges effectively.

“The study of these types of radiation treatments is a very active field that is also very niche,” said George Sgouros, Ph.D., director of the radiological physics division and professor of radiology and radiological science at the Johns Hopkins University School of Medicine. “It is a unique area of study because a multidisciplinary team is needed to fully optimize such therapies, everything from physics, radiochemistry, biology and pharmacokinetics impacts this treatment approach.”

Related Links:
Johns Hopkins Medicine


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Imaging Table
Stille imagiQ2
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.