We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Novel Ultrasound Imaging Technique Could Reveal Immune Cell Secrets and Improve Treatments

By HospiMedica International staff writers
Posted on 13 Dec 2023

Macrophages are small, essential cells that play a crucial role in the immune system, involved in various functions such as pathogen detection, wound healing, and managing inflammation related to injuries and diseases like diabetes and rheumatoid arthritis. More...

They have potential applications in cell-based therapies for conditions including cancer, autoimmune disorders, infections, and tissue damage. These therapies might entail isolating, modifying, or engineering macrophages to augment their disease-fighting, immune-regulating, and tissue-repairing abilities. However, the effectiveness of macrophage therapies hinges on the ability to monitor these cells within the body. Researchers have now developed an innovative ultrasound imaging method to continuously observe macrophages in mammalian tissue, with future prospects for human use.

Due to their invisibility in traditional ultrasound imaging, researchers at Penn State (University Park, PA, USA) formulated a contrast agent to distinguish macrophages from other cells in the tissue. This involved the use of nanoemulsions - mixtures of minuscule oil droplets, nanometers in size, suspended in a liquid. The team aimed to create more stable bubbles using these nanoemulsions. In ultrasound imaging, gas bubbles effectively reflect sound waves, but standard bubbles injected into the body burst quickly. The researchers introduced nanoemulsion droplets to the macrophages, which internalized them. Upon ultrasound exposure, the droplets underwent a phase change to gas, forming bubbles. This transformation was facilitated by the ultrasound waves' pressure, which oscillates to force the droplet to vaporize into a gas bubble.

This technique was successfully tested in a porcine tissue sample, demonstrating the ability to image macrophages effectively. This method offers a continuous insight into the actions of immune cells within the body, enhancing the understanding of immune system regulation and its role in combating diseases. Moreover, it holds promise for advancing immune cell therapies, potentially leading to more effective treatments with fewer side effects. For instance, it could enable the development of targeted macrophage cell therapies for cancer patients. Future research directions include applying this technique for visualizing other types of immune cells in humans or monitoring arterial plaque buildup.

Related Links:
Penn State


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Gynecological Examination Chair
arco-matic
Xenon Light Source
CLV-S400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.