We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New MRI Technology Enables Non-Invasive Assessment of Interstitial Fluid Flow

By HospiMedica International staff writers
Posted on 13 Dec 2023

Interstitial fluid flow is closely connected with drug delivery and distribution, playing a vital role in their therapeutic effects on tumors. More...

However, there are very few non-invasive measurement methods available for measuring low-velocity biological fluid flow. The interstitial fluid velocity is four orders of magnitude lower than blood flow. The phase-contrast MRI (PC-MRI) technology is widely used to measure the velocity of rapid flow in biological tissues, such as blood. PC-MRI requires significant gradient intensity and duration when used for slow flow measurements, although high gradient intensity is especially sensitive to motion and creates motion artifacts during imaging. Additionally, when measuring slow flow velocity, the encoding gradient is large, and the echo time is relatively long. The SNR is significantly lost as the gradient echo is based on T2 relaxation decay. As a result, PC-MRI application is very limited.

Now, a team of researchers from the National Center for Nanoscience and Technology (NCNST, Beijing, China) has proposed a new, non-invasive MRI technology designed specifically for measuring interstitial fluid flow. The researchers combined PC-MRI with an improved stimulation echo sequence (ISTE). Conventional PC-MRI usually uses gradient echo, spin echo (SE), and stimulated echo (STE). Compared to the gradient echo, SE uses a 180° focusing pulse to focus the signal in the transverse plane, and its signal is affected by T2 relaxation, which decays more slowly and has a slightly higher image SNR. STE excites a part of the signal to the longitudinal plane and mitigates part of the T2 relaxation decay.

However, STE is not superior to SE under any TE condition. Hence, the research team proposed ISTE which refocuses the magnetic moment vectors in the longitudinal plane and yields better SNRs than STE or SE. Their effort led to an increase in the velocity encoding gradient interval, which can minimize the diffusion sensitivity factor under the same flow velocity measurement sensitivity, thereby reducing the signal loss caused by diffusion and improving the detection accuracy of slow-flow imaging. The researchers are hopeful that their novel method can further improve understanding of interstitial fluid flow.

Related Links:
NCNST


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Spirometry & Oximetry Software
MIR Spiro
Gold Member
Electrode Solution and Skin Prep
Signaspray
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.