We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Advanced Assistive Technology Predicts Organ Deformation during Radiotherapy

By HospiMedica International staff writers
Posted on 06 Oct 2023

Radiation therapy is a popular choice for treating cancer and other conditions, largely because it's minimally invasive, allowing patients to quickly resume their normal lives. More...

One issue, though, is that radiation can affect nearby healthy organs, particularly when high radiation doses are administered to diseased tissues in motion. While regular movements like breathing are somewhat predictable, irregular movements caused by the organ's interactions with neighboring organs can be hard to predict. The ability to precisely anticipate how organs move during radiation treatment is crucial for improving the therapy's effectiveness. Now, a new technology can capture real-time cross-sectional images of the affected area and use them to create three-dimensional (3D) motion of organs. This enables accurate predictions of the deformation of the pancreas and other organs depending on their position related to the nearby organs during radiation therapy.

Researchers from the University of Tsukuba (Ibaraki, Japan) have developed an innovative technique to determine the 3D movement of organs based on their relative positions to neighboring organs. This is done by acquiring real-time cross-sectional (2D) images of the targeted area from three different orientations during radiation therapy. Additionally, the researchers have created a cross-section selection system for picking the most accurate 2D image for further analysis.

The research team validated their technique using publicly accessible MRI data from 20 cases to evaluate the pancreas's position. When using data from just one angle, the error in locating the pancreas was 5.11 mm. However, when data from all three angles was employed, this error shrank dramatically to just 2.13 mm. In some cases, the accuracy was even comparable to what would be achieved if 3D information had been gathered beforehand. These findings could pave the way for radiation therapy protocols designed to minimize radiation exposure to nearby healthy organs, resulting in safer radiation therapy.

Related Links:
University of Tsukuba


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Morcellator
TCM 3000 BL
OR Table Accessory
Angular Accessory Rail
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.