We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Deep Learning Enables Fast 3D Brain MRI at 0.055 Tesla

By HospiMedica International staff writers
Posted on 27 Sep 2023

In the past few years, there has been significant work on developing portable ultralow-field magnetic resonance imaging (MRI) machines. More...

These are designed to be affordable, easy to use without special shielding, and good for point-of-care settings. However, their image quality has not been up to the mark, and scans also take a long time. Deep learning is changing the game and has been effective in various high-field MR image reconstruction tasks, including artifact, denoising, and reconstruction. Now, researchers have proposed a fast acquisition and deep learning reconstruction framework to speed up brain MRI at 0.055 tesla.

In a new study aiming to advance brain ultralow-field MRI for speed and quality using deep learning, researchers at The University of Hong Kong (Hong Kong, PRC) successfully achieved fast 3D brain MRI at 0.055 T. This was done by directly combining the accelerated MR data acquisition and the deep learning 3D image formation that reconstructs images from incomplete 3D k-space data with super-resolution. The acquisition comprises a single average 3D encoding with 2D partial Fourier sampling, cutting down the scan time of T1- and T2-weighted imaging protocols to 2.5 and 3.2 minutes, respectively.

The 3D deep learning system takes advantage of the homogeneous brain anatomy available from high-field MRIs to enhance image quality. It minimizes errors and noise while boosting the spatial resolution to a synthetic 1.5-mm isotropic resolution. The new approach successfully overcomes the limitations of low signal strength, allowing for the detailed reconstruction of fine anatomical features. These features are consistent both within individual subjects and across different imaging protocols. This new method opens the door to fast and high-quality whole-brain MRIs at a magnetic field strength of 0.055 tesla, offering a variety of potential applications in biomedicine.

Related Links:
The University of Hong Kong 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Newborn Hearing Screener
ALGO 7i
External Defibrillator
HeartSave Y | YA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.