Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI-Powered Algorithm Catches Unruptured Brain Aneurysms Missed in Routine CT Scans

By HospiMedica International staff writers
Posted on 18 Sep 2023

Each year, a significant number of people worldwide suffer from ruptured aneurysms in the brain. More...

Often, these aneurysms are discovered by chance during brain scans conducted for unrelated issues. Now, a machine learning algorithm has been found to better identify these unruptured aneurysms that need medical attention but may be overlooked during routine brain scans.

Researchers from UTHealth Houston (Houston, TX, USA) studied a prospectively maintained registry that involved eight approved stroke centers. They focused on patients who had undergone CT angiography scans to evaluate potential stroke risks. A machine learning algorithm called Viz Aneurysm from Viz.ai (San Francisco, CA, USA), analyzed these scans to identify unruptured cerebral aneurysms that were at least four millimeters large. Out of 1,191 scans reviewed during the study, the algorithm flagged 50 as possibly showing an unruptured aneurysm. From those, 36 genuine aneurysms were detected from 31 CT angiograms, including four cases of multiple aneurysms.

Of these 36 confirmed aneurysms, 67% had not been previously marked for further evaluation, and they had a median size of 4.4 millimeters. Five of these untracked aneurysms were larger than seven millimeters and carried an average 2.4% risk of rupture over the next five years. To put it simply, only a third of the unruptured aneurysms that likely needed further investigation had been initially flagged for follow-up during routine clinical care. The most common location for these aneurysms was the internal carotid artery, accounting for 46% of cases. Researchers believe that such machine learning algorithms can enhance the detection rate of unruptured cerebral aneurysms by flagging CT angiograms suspected of aneurysm. Such algorithms can also help streamline follow-up and communication among healthcare providers through the same platform.

“We have already seen the tremendous benefit that machine learning can bring to patients suffering from acute stroke,” said senior author Sunil A. Sheth, MD, associate professor at UTHealth Houston. “In this study, we see a similar possibility for substantially improving the way in which we identify, counsel, and help patients with brain aneurysms.”

Related Links:
UTHealth Houston 
Viz.ai


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Radiology System
Riviera SPV AT
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.