We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI System Confirms Tracheal Tube Position on Chest X-Rays

By HospiMedica International staff writers
Posted on 15 Sep 2023

Timely and accurate evaluation of chest X-rays to check the placement of endotracheal tubes (ETTs) is crucial for making immediate adjustments if required. More...

A deep learning (DL)-powered artificial intelligence (AI) system has been found to be effective in detecting incorrectly positioned ETTs from chest X-rays taken right after the ETT was inserted or after admission to the ICU.

Researchers at Seoul National University Hospital (Seoul, Korea) conducted a study to evaluate the performance of a commercial DL-based AI system from Lunit (Seoul, Korea) for assessing the presence and placement of ETTs on chest X-rays. They examined three separate patient samples from two different medical centers. The first sample comprised 539 chest X-rays from 505 patients (293 males and 212 females, average age 63) taken immediately after ETT placement between January and March 2020 at institution A. The second sample involved 637 X-rays from 304 ICU patients (158 males and 147 females, average age 63) at the same institution, taken from January 1 to January 3, 2020. The third sample consisted of 546 X-rays from 83 ICU patients (54 males and 29 females, average age 70) at institution B, taken from January 1 to January 20, 2020.

Lunit’s commercial DL-based AI system was used to both detect the presence of the ETT and measure the distance from the tip of the ETT to the carina (TCD). Human readers set the standard for proper ETT placement as a TCD between 3 cm and 7 cm. A "critical" ETT placement was separately categorized as either an ETT tip located below the carina or a TCD equal to or less than 1 cm. Remarkably, the AI system exhibited a sensitivity range of 99.2–100% in identifying ETT presence and a specificity range of 94.5–98.7% across all three patient samples from the two institutions. For improper ETT positioning, it showed a sensitivity of 72.5–83.7% and specificity of 92.0–100%. For detecting critical ETT positioning, the system achieved 100% sensitivity in all samples and a specificity range of 96.7–100%.

“Automated AI identification of improper ETT position on chest radiograph may allow earlier repositioning and thereby reduce complications,” stated Eui Jin Hwang, MD, PhD, from the department of radiology at the Seoul National University Hospital.

Related Links:
Lunit 
Seoul National University Hospital


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Infant Incubator
OKM 801
Infrared Digital Thermometer
R1B1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.