We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New AI Model Helps Radiologists Identify Breast Cancer Lesions on Ultrasound Images

By HospiMedica International staff writers
Posted on 30 Aug 2023

While ultrasound is frequently used for diagnosing breast cancer due to its availability and cost-effectiveness, its accuracy remains a challenge, often leading to high false-positive rates and unnecessary biopsies. More...

Now, a novel artificial intelligence (AI) model could enhance the accuracy of radiologists in assessing ultrasound images for indications of breast cancer. This algorithm could be particularly beneficial for less-experienced readers who are still developing their skills.

Researchers at Nanjing Medical University (Nanjing, China) conducted a retrospective study to assess the diagnostic performance of a deep learning (DL) model for breast ultrasound and its utility for readers with varying levels of expertise. They utilized data from over 45,000 ultrasound images taken using 42 different machine types across four hospitals. The researchers developed and verified a dual attention-based convolutional neural network that can differentiate malignant tumors from benign ones using B-mode and color Doppler ultrasound images.

Using the DL model and without it, three novice readers with less than 5 years of ultrasound experience and two seasoned readers with 8 and 18 years of ultrasound experience each interpreted 1,024 randomly chosen lesions. The differences in areas under the receiver operating characteristic curves (AUCs) were analyzed using the DeLong test. The DL model showcased performance similar to experienced human readers, highlighting its potential as a reliable diagnostic tool. Specifically, the DL model's AUC closely matched that of seasoned radiologists. Novice radiologists with fewer than five years of ultrasound experience demonstrated notable enhancements when assisted by the DL model. The model increased their diagnostic precision, effectively elevating their performance to levels similar to those of experienced readers.

With the assistance of the DL model, both novice and experienced radiologists showed substantial improvements in diagnostic accuracy and interobserver agreement. Of particular significance was the noteworthy 7.6% decrease in the average false-positive rate. These findings suggest that DL-assisted diagnosis could be extremely beneficial for breast tumor diagnosis using ultrasound images. The model's accuracy, consistent results across different hospitals, and ability to support both novices and experts indicate a promising future for integrating DL technology into clinical practice. By boosting diagnostic accuracy and minimizing false-positive rates, the DL model could potentially streamline clinical processes and lower the risk of conducting unnecessary biopsies.

“This method is promising as an efficient and cost-effective tool for assisting radiologists, especially novice radiologists, in breast tumor diagnosis,” stated first author Huiling Xiang. “Further studies are warranted to characterize the feasibility of the model's widespread adoption.”

Related Links:
Nanjing Medical University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Critical Care Conversion Kit
Adapter+
Xenon Light Source
CLV-S400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.