We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Model Detects Diabetes Using Chest X-Rays

By HospiMedica International staff writers
Posted on 04 Aug 2023

Present guidelines recommend screening individuals aged between 35 and 70 years who are overweight to obese, as indicated by their Body Mass Index (BMI), for type 2 diabetes. More...

Nonetheless, numerous studies indicate that this approach fails to identify a significant number of cases, especially among racial and ethnic minorities for whom BMI is a less reliable indicator of diabetes risk. Undiagnosed diabetes patients are at a much higher risk of developing complications, including irreversible organ damage and even death. Now, a new artificial intelligence (AI) model has demonstrated that X-ray images taken during routine medical care can reveal signs of diabetes in individuals who do not meet the criteria for increased risk. This could aid doctors in detecting the disease earlier, preventing complications.

Using deep learning on images and electronic health record data, a multi-institutional team has developed a model that successfully flagged heightened diabetes risk in a retrospective analysis, often years before the disease was diagnosed. The AI model was trained on over 270,000 X-ray images from around 160,000 patients, with deep learning identifying the image features that best predicted a future diabetes diagnosis. As chest X-rays are not typically used for diabetes detection, the researchers utilized explainable AI techniques to understand the reasoning behind the model's predictions. The methods identified the location of fatty tissue as crucial in determining risk, which aligns with recent medical research linking visceral fat in the upper body and abdomen to type 2 diabetes, insulin resistance, hypertension, and other conditions.

Due to the groundbreaking nature of the approach and its remarkable results, the initial team enlisted researchers from Emory University (Atlanta, GA, USA) to externally validate the model. When applied to an independent group of nearly 10,000 patients, the model outperformed a basic model based on non-image clinical data in predicting diabetes risk. In certain cases, the chest X-ray flagged high diabetes risk up to three years before an eventual diagnosis. The model also provides a numerical risk score that could potentially aid clinicians in personalizing treatment plans for patients.

Annually, millions of chest X-rays are taken due to chest pain, difficulty breathing, injury, or as a pre-surgery procedure. While radiologists are not specifically looking for diabetes when examining these X-rays, such images become part of a patient's medical history and could be analyzed later for diabetes or other conditions. The researchers now plan to validate the model further and integrate it into electronic health record systems to alert physicians to conduct traditional diabetes screening for patients identified as high-risk based on X-ray findings. Their next focus will be to investigate the effectiveness of chest X-rays in diagnosing other conditions, such as vascular disease, congestive heart failure, and chronic obstructive pulmonary disease.

“Chest X-rays provide an ‘opportunistic’ alternative to universal diabetes testing,” said Judy Wawira Gichoya, MD, assistant professor of radiology and imaging sciences, and the lead researcher from Emory. “This is an exciting potential application of AI to pull out data from tests used for other reasons and positively impact patient care.”

Related Links:
Emory University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Portable Jaundice Management Device
Nymphaea
Radiology System
Riviera SPV AT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.