Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




3D X-Ray Imaging Technique to Significantly Improve Breast Cancer Detection

By HospiMedica International staff writers
Posted on 20 Jul 2023

In 2020, breast cancer emerged as the most frequently diagnosed cancer globally, with over two million recorded cases. More...

It represented 24.5% of cancer diagnoses in women and 15.5% of cancer-related deaths. In many developed nations, mammography screening programs serve as a key early detection strategy, contributing to reduced mortality rates. However, the complexity of reading mammograms, even for experts, presents a challenge. The low contrast of breast tissue under X-ray and the often unclear representation of the breast's complex interior by two-dimensional imaging complicate the process. Additionally, the mandatory compression of the breast for X-ray examination can cause discomfort or even pain, deterring some women from undergoing screenings. Now, researchers have successfully enhanced mammography, an X-ray imaging technique used for early-stage tumor detection, leading to significantly improved reliability and a less distressing experience for patients.

A research team that included scientists from the Paul Scherrer Institute (PSI, Aargau, Switzerland) has extended conventional computed tomography (CT) to yield significantly higher image resolution while maintaining the same radiation dose. This improvement could facilitate the earlier detection of small calcium deposits or microcalcifications, potential indicators of breast tumors, thus improving the survival prospects for affected women. The experts anticipate the swift clinical implementation of this X-ray phase contrast-based technique. Phase-contrast X-ray imaging improves tumor diagnostics by incorporating additional physical data. This allows for the utilization of an effect image creation, generally overlooked in conventional X-rays, that captures the information contained in signals produced when X-rays refract and scatter upon contact with biological tissue. This is due to electromagnetic waves, including X-rays and visible light, undergoing not only attenuation but also refraction and diffraction when traversing structures of varying densities. This information can be leveraged to enhance image contrast and resolution, enabling easier identification of minuscule objects.

The researchers employed grating interferometry (GI), a technique used to measure physical systems, for developing their method. In this approach, X-rays pass through not only the object under examination but also through three gratings with a line spacing of a few micrometers, making the additional information visible. The team has presented several images illustrating the superior resolution and contrast of GI computed tomography compared to traditional X-rays. The X-rays can originate from a standard source, delivering a radiation dose similar to conventional CT breast scans. Moreover, the new screening approach should increase patient comfort during the procedure. Patients can lie face down on a table with chest-area gaps while the shielded tomograph underneath rotates around the breasts to construct a three-dimensional image. The team aims to initiate clinical trials in collaboration with their clinical partners by the end of 2024, by which time they expect to have a prototype device ready for initial patient examinations.

“The phase-contrast X-rays reveal fine details of the tissue,” said Rahel Kubik-Huch, Director of the Department of Medical Services at Baden Cantonal Hospital (KSB) and Chief Physician for Radiology, who was involved in the research work. “This translational project is meant to explore the potential of this technique for detecting breast cancer in its early stages. We hope that one day our patients will be able to benefit from these advances.”

Related Links:
PSI 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Imaging Table
Stille imagiQ2
Xenon Light Source
CLV-S400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.