We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Smaller, Less Expensive Portable MRI Systems to Expand Applications in Various Health Care Settings

By HospiMedica International staff writers
Posted on 19 Jul 2023

Magnetic Resonance Imaging (MRI) machines offer detailed views of the body's non-bony structures like the brain, muscles, and ligaments, and are instrumental in identifying tumors and diagnosing various ailments. More...

Nonetheless, their high cost, bulkiness, and dependency on powerful magnets limit their availability, primarily to large healthcare facilities. In response to this, companies are designing portable MRI machines that rely on lower-strength magnetic fields. These innovative models hold the potential to extend MRI applications, possibly being incorporated in mobile environments like ambulances. Their reduced cost could also enable greater accessibility, especially in underprivileged communities and developing nations. However, further research is crucial to comprehend the connection between low-field images and the underlying tissue properties they represent.

Researchers at the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA) have been exploring ways to advance and validate the use of low-field MRI technology for creating images with weaker magnetic fields. In a recent study, the team employed a portable MRI machine available in the market to examine brain tissue characteristics at low magnetic field strength. They used a 64 millitesla magnetic field, significantly lower than traditional MRI machines, to image the brain tissue of ten volunteers. The MRI system was able to produce distinctive images of the entire brain, including its gray matter, white matter, and cerebrospinal fluid. Each of these brain constituents responds uniquely to low magnetic fields, generating distinct signals that offer quantitative information about each component.

Separately, NIST researchers are also investigating materials that could dramatically improve the image quality of low-field MRI scans. MRI contrast agents, which enhance image contrast, making it easier for radiologists to identify anatomical features or evidence of disease, are generally used in MRI at conventional magnetic field strengths but are relatively new in the area of low-field MRI scanners. Researchers have discovered that contrast agents behave differently at lower field strengths, indicating a potential to explore new types of magnetic materials for image enhancement.

The team at NIST tested several magnetic contrast agents' sensitivity at low magnetic fields. The findings revealed that iron oxide nanoparticles were more effective than conventional contrast agents made from gadolinium, a rare-earth metal. At low magnetic field strength, the nanoparticles yielded sufficient contrast utilizing only about one-ninth of the concentration of the gadolinium particles. Moreover, the human body can break down iron oxide nanoparticles, thereby preventing potential accumulation in tissue, unlike gadolinium, which could affect the interpretation of future MRI scans if not accounted for.

Related Links:
NIST


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.