We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Fuses CT and MRI Scans for Improved Clinical Diagnosis

By HospiMedica International staff writers
Posted on 30 Jun 2023

Computed tomography (CT) imaging uses X-ray technology to take detailed cross-sectional images of the body, which are then converted into a 3D visualization of bone structures that are opaque to X-rays. More...

On the other hand, magnetic resonance imaging (MRI) uses powerful magnetic fields and radio waves to generate precise images of soft tissues such as organs or damaged tissues. Combining these two techniques could offer healthcare professionals a more holistic view of a patient's anatomy, uncovering hidden aspects of their health issues. Now, new research has demonstrated how artificial intelligence (AI) can be utilized to combine images from clinical X-ray CT and MRI scans.

The new method, known as the Dual-Branch Generative Adversarial Network (DBGAN), has been developed by researchers at Queen Mary University of London (London, UK) and Shandong University of Technology (Zibo, China) holds the potential for enabling a clearer and more clinically valuable interpretation of CT and MRI scans. This technique effectively merges the rigid bone structures from the CT scan with the detailed soft tissue imaging from the MRI. This development could enhance clinical diagnosis and patient care for a multitude of conditions where such scans are commonly used but exhibit limitations when utilized separately.

DBGAN is an advanced AI approach based on deep-learning algorithms, featuring a dual-branch structure with multiple generators and discriminators. The generators produce fused images that blend the key features and additional information from CT and MRI scans. The discriminators evaluate the quality of the generated images by comparing them to real images and filtering out lower-quality ones until a high-quality fusion is achieved. This generative adversarial interaction between generators and discriminators enables the efficient and realistic fusion of CT and MRI images, minimizing artifacts and maximizing visual information.

The dual nature of DBGAN includes a multi-scale extraction module (MEM) which focuses on extracting key features and detailed information from the CT and MRI scans and a self-attention module (SAM) which highlights the most relevant and unique features in the fused images. Comprehensive testing of the DBGAN approach has shown its performance to be superior as compared to existing techniques in terms of image quality and diagnostic accuracy. As CT and MRI scans each have their own strengths and weaknesses, the application of AI can help radiographers to synergistically combine both types of scans, maximizing their strengths and eliminating their weaknesses.

Related Links:
Queen Mary University of London 
Shandong University of Technology 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Pulmonary Ventilator
OXYMAG
Imaging Table
Stille imagiQ2
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.