We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Could Help Doctors Diagnose Lung Cancer Earlier From CT Scans

By HospiMedica International staff writers
Posted on 30 May 2023

Lung cancer is the predominant cause of cancer-related deaths worldwide. More...

While early-stage diagnoses facilitate more effective treatments, the majority of lung cancers are discovered at stage three or four, highlighting a crucial need for quicker detection measures. Lung nodules, although typically harmless, are abnormal growths that can occasionally become cancerous. Particularly large nodules (15-30mm in size) carry the highest risk. A new study suggests that artificial intelligence (AI) could aid doctors in diagnosing lung cancer earlier by precisely identifying cancerous large lung nodules in CT scans. This technology could potentially speed up lung cancer detection by prioritizing high-risk patients for treatment and enhancing the efficiency of patient scan analysis.

The LIBRA study led by researchers from The Royal Marsden NHS Foundation Trust (London, UK) used data from the CT scans of nearly 500 patients with large lung nodules. The team utilized a technique called radiomics to analyze CT scan data, which extracts disease-related information from medical images that might not be easily perceptible to the human eye. The AI model was subsequently tested for its accuracy in identifying cancerous nodules. The model's performance was evaluated using an "Area under the curve" (AUC) measure, where 1 represents a flawless model and 0.5 equates to a model merely guessing. The results suggested that the AI model could identify the risk of cancer for each nodule with an AUC of 0.87, surpassing the performance of the clinic's current Brock score test, which scored 0.672.

The AI model's performance was also comparable to another existing clinical test, the Herder score, which achieved an AUC of 0.83. However, given that the AI model only uses two variables, compared to 7 for the Herder score and 9 for the Brock score, it has the potential to simplify and accelerate nodule risk calculations in the future. The new model could also assist clinicians in making decisions about patients who currently lack a clear referral path. Under the Herder scoring system, patients with scores less than 10% are deemed low risk, while those with scores over 70% are considered high risk and require intervention. For patients in the intermediate risk group (10-70%), a variety of tests or treatment options might be considered. When paired with the Herder score, the researchers' model was capable of identifying high-risk patients within this group, suggesting early intervention for 18 out of 22 (82%) of the nodules that were later confirmed to be cancerous.

“According to these initial results, our model appears to identify cancerous large lung nodules accurately,” said Dr. Benjamin Hunter, Clinical Oncology Registrar at The Royal Marsden NHS Foundation Trust. “In the future, we hope it will improve early detection and potentially make cancer treatment more successful by highlighting high-risk patients and fast-tracking them to earlier intervention. Next, we plan to test the technology on patients with large lung nodules in clinic to see if it can accurately predict their risk of lung cancer.”

“People diagnosed with lung cancer at the earliest stage are much more likely to survive for five years, when compared with those whose cancer is caught late,” added Dr. Richard Lee, Chief investigator for the LIBRA study. “This means it is a priority we find ways to speed up the detection of the disease, and this study – which is the first to develop a radiomics model specifically focused on large lung nodules – could one day support clinicians in identifying high-risk patients.”

Related Links:
The Royal Marsden NHS Foundation Trust 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
ECG Management System
NEMS Web
Pulmonary Ventilator
OXYMAG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.