Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Combining Aiming Device with Laser Guidance Significantly Improves Target Accuracy during CT Procedures

By HospiMedica International staff writers
Posted on 01 May 2023

Laser guidance has been shown to enhance needle placement during percutaneous interventions, but it has certain limitations. More...

Despite laser guidance, needles must still be inserted manually and constantly illuminated to prevent clinicians from losing their mark. If a needle isn't adequately supported, its path may deviate during verification scans, necessitating additional sequences and increasing radiation exposure. A new study suggests that an aiming device could offer a solution to this issue.

Researchers at Medical University Innsbruck (Innsbruck, Austria) discovered that using an aiming device in conjunction with laser guidance during interventional CT procedures can boost targeting accuracy. They tested the effectiveness of an Atlas aiming device and compared its accuracy by performing 600 CT-guided punctures with and without targeting support on a plexiglass phantom. Planning CT data sets with 1.25, 2.5, and 5 mm slice thicknesses were obtained to evaluate needle accuracy and the impact of device usage on procedural times. Euclidean (ED) and normal distances (ND) were calculated at the target point.

When using the aiming device, the mean ND at the target for the 1.25, 2.5, and 5 mm slice thicknesses were 1.76 mm, 2.09 mm, and 1.93 mm, respectively. In comparison, freehand insertion results were 2.55 mm, 2.7 mm, and 2.31 mm. The accuracy of both ED and ND was significantly improved with the device at a slice thickness of 1.25 mm and 2.5 mm. However, the device led to a slight increase in procedure times, from 24.8 minutes without it to 29.8 minutes with it. Aiming devices, which stabilize needles, could be particularly helpful in reaching superficial or bone lesions and may also be useful for targeting deep lesions, according to the researchers. The team highlighted that their findings "indicate a clear, statistically significant superiority" in accuracy when using an aiming device and added that it should be technically feasible for adoption along with laser guidance systems already in clinical use.

“Additional support could be provided by a rigid aiming device to maintain the needle's steady position within the laser beam. In addition, a needle holder already aligned at the target allows needle insertion at a higher velocity, which may enhance position accuracy and reduce tissue damage,” concluded the researchers.


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Medical Monitor
VITALMAX 4100SL
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.