We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Point-of-Care AI for Chest X-Rays Accurately Classifies Optimal and Suboptimal Chest Radiographs

By HospiMedica International staff writers
Posted on 11 Apr 2023

Chest radiographs (CXR) are the most common imaging test, accounting for nearly 40% of all imaging examinations. More...

This popularity is due to their accessibility, practicality, low cost, and moderate sensitivity in diagnosing pulmonary, mediastinal, and cardiac issues. However, there is significant variability in CXR interpretation among radiologists. Higher quality images could lead to more consistent and reliable readings, but suboptimal CXRs can hinder the detection of critical findings. Now, radiologist-trained artificial intelligence (AI) models can accurately classify optimal and suboptimal CXRs, potentially enabling radiographers to repeat poor-quality scans when necessary.

Radiologists at the Massachusetts General Hospital and Harvard Medical School (Boston, MA, USA) have developed AI models that can distinguish between optimal and suboptimal CXRs and provide feedback on the reasons for suboptimality. This feedback, offered at the front end of radiographic equipment, could prompt immediate repeat acquisitions when needed. The radiologists utilized an AI tool-building platform to create their model that allows clinicians to develop AI models without prior expertise in data sciences or computer programming. This software could help reduce variability among radiologists.

The development of the model involved 3,278 CXRs from five different sites. A chest radiologist assessed the images and identified the reasons for their suboptimality. These anonymized images were then uploaded to an AI server application for training and testing. The model's performance was evaluated based on its area under the curve (AUC) for distinguishing between optimal and suboptimal images. Reasons for suboptimality included missing anatomy, obscured thoracic anatomy, inadequate exposure, low lung volume, or patient rotation. The AUCs for accuracy in each category ranged from .87 to .94.

The model demonstrated a consistent performance across age groups, sexes, and various radiographic projections. Importantly, the categorization of suboptimality is not time-consuming and it takes less than a second per radiograph per category to classify an image as optimal or suboptimal, according to the experts. The team has suggested that this could speed up the repeat process as well as streamline manual audits, which are typically laborious and time-consuming.

“An automated process using the trained AI models can help track such information in near time and provide targeted, large-scale feedback to the technologists and the department on specific suboptimal causes,” the group explained, adding that in the long-term this feedback could reduce repeat rates, saving time, money and unnecessary radiation exposures.

Related Links:
Mass General


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Newborn Hearing Screener
ALGO 7i
Premium Air-Mattress
MA-51
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.