We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Breakthrough AI Platform Predicts Likelihood of Lung Cancer by Analyzing CT Scans

By HospiMedica International staff writers
Posted on 30 Mar 2023

Lung cancer is responsible for the most cancer-related deaths globally. More...

The current survival rate after five years is a mere 20%, largely due to patients being diagnosed at advanced stages (Stage III or IV) after symptoms have manifested. In contrast, small tumors detected at Stage IA have a survival rate of up to 90%. There is a need for an effective strategy to identify more small, pre-symptomatic lung cancers early on in the two million patients in the United States annually who incidentally have a lung nodule detected during chest CT scans ordered for other purposes, such as emergency room or cardiac scans.

The current protocol requires monitoring patients for one to two years to determine the malignancy of a lung nodule. However, the majority of patients (over 60%) fail to receive the recommended follow-up, severely limiting opportunities for early diagnosis and treatment. For those who do receive proper monitoring, multiple imaging scans and biopsies are often necessary, which can result in unnecessary invasive procedures such as surgical biopsies and lung resections before a definitive diagnosis is reached. Now, a new artificial intelligence (AI) tool is designed to solve this problem by allowing pulmonologists to identify and track patients with suspicious lung nodules and make informed decisions regarding clinical management.

Optellum Ltd.’s (Oxford, UK) Virtual Nodule Clinic software incorporates a clinically-validated Lung Cancer Prediction (LCP) score to enable clinicians to more accurately evaluate the risk of lung cancer and make optimal clinical decisions for patients. This AI tool is designed to address the problem of missed opportunities for early intervention and treatment by helping pulmonologists identify and track at-risk patients with suspicious lung nodules. The LCP score is computed from 3D pixel patterns in standard CT images, which are already widely available in modern hospitals. By training on over 70,000 CT scans, Virtual Nodule Clinic can predict the likelihood of lung cancer and classify patients into high-risk, intermediate-risk, or low-risk categories. This technology helps reduce unnecessary biopsies for low-risk patients while enabling timely biopsies and treatment for high-risk patients with cancerous nodules. Additionally, this software reduces the need for multiple imaging scans and invasive procedures, thereby improving patient outcomes.

The use of Optellum's Virtual Nodule Clinic by physicians has demonstrated an improvement in diagnostic accuracy and clinical decision-making. Optellum's LCP has undergone extensive validation in multi-center studies led by co-authors of clinical guidelines, and consistently outperformed conventional risk prediction models recommended in current clinical guidelines. These models are considered state-of-the-art in classifying nodules as low, intermediate, or high risk. For instance, one independent validation study, led by physicians, revealed that the AI accurately reclassified indeterminate nodules into high- and low-risk categories in over one-third of cancers and benign nodules. This demonstrates its potential for accelerating lung cancer diagnosis and reducing invasive biopsies and surgeries on patients without lung cancer, compared to the current standard of care.

Related Links:
Optellum Ltd. 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Autoclave
Advance
Exam Table
PF400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.