Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Novel AI Image Generation Tool Has Promising Future in Radiology

By HospiMedica International staff writers
Posted on 20 Mar 2023

DALL-E 2, an artificial intelligence (AI) tool that was unveiled in April 2022 by OpenAI, generates novel photorealistic images or artwork based on textual input. More...

Trained on billions of text-image pairs available existing on the internet, DALL-E 2 boasts powerful generative capabilities. Now, new research indicates that the DALL-E 2 deep learning model for text-to-image generation could have a bright future in health care, particularly for image generation, augmentation, and manipulation.

Researchers at Charité University Berlin (Berlin, Germany) set out to examine whether generative models have sufficient medical domain knowledge to provide accurate and useful results and to understand if the capabilities of DALL-E 2 can be transferred to the medical domain in order to create or augment data. They analyzed DALL-E 2’s radiological knowledge in creating and manipulating X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound images. The research team found that DALL-E 2 has learned relevant representations of X-ray images and has the potential for text-to-image generation. In particular, DALL-E 2 managed to create realistic X-ray images based on short text prompts, although it performed poorly when presented with specific CT, MRI, or ultrasound image prompts. Moreover, while it was able to reasonably reconstruct missing elements in radiological images, its ability to generate images with pathological abnormalities was limited. Additionally, DALL-E 2 could do much more, such as generating an entire, full-body radiograph using only one knee image.

Synthetic data generated by DALL-E 2 can significantly speed up the development of new deep-learning tools for radiology while resolving privacy concerns over data sharing between institutions. The researchers have suggested that the generated images must be subjected to quality control by domain experts in order to minimize the risk of incorrect information being integrated into a generated data set. According to the researchers, there is also a need for further research to tweak these models to medical data and integrate medical terminology in order to create powerful models for data generation and augmentation in radiology research. DALL-E 2 is unavailable to the public for fine-tuning, although other generative models such as Stable Diffusion can be tweaked by the public and adapted to generate a variety of medical images. The study indicates that AI image generation in radiology has a promising future and further R&D could pave the way for exciting new tools for radiologists and medical professionals.

Related Links:
Charité University Berlin


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Enteral Feeding Pump
SENTINELplus
Infant Resuscitator
Easypuff
Isolation Stretcher
IS 736
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.