Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI-Powered Ultrasound Imaging Detects Breast Cancer

By HospiMedica International staff writers
Posted on 14 Mar 2023

Breast cancer is undeniably the most commonly reported type of cancer among women, exhibiting a continuous increase in incidence rates in the past two decades, unlike the other significant cancer types. More...

Early detection and treatment can improve the probability of recovery; however, the survival rate in breast cancer patients sharply declines to less than 75% after the third stage. As a result, regular medical check-ups are critical for reducing mortality rates. Ultrasonography is a major medical imaging technique for the assessment of breast lesions, and computer-aided diagnosis (CAD) systems have aided radiologists by segmenting and identifying lesion features to distinguish between benign and malignant lesions. Now, a team of researchers has developed an AI network system for ultrasonography to accurately detect and diagnose breast cancer.

A team of researchers from Pohang University of Science and Technology (POSTECH, Gyeongbuk. Korea) has developed a deep learning-based multimodal fusion network for the segmentation and classification of breast cancers using B-mode and strain elastography ultrasound images. The team developed deep learning (DL)-based methods to segment the lesions and then classify them as benign or malignant, using both B-mode and strain elastography (SE-mode) images. First, the team constructed a ‘weighted multimodal U-Net (W-MM-U-Net) model’ where the optimum weight is assigned on different imaging modalities to segment lesions, utilizing a weighted-skip connection method. The researchers have also proposed a ‘multimodal fusion framework (MFF)’ on cropped B-mode and SE-mode ultrasound (US) lesion images to classify benign and malignant lesions.

The MFF consists of an integrated feature network (IFN) and a decision network (DN). Unlike other recent fusion methods, the proposed MFF method can simultaneously learn complementary information from convolutional neural networks (CNN) that are trained with B-mode and SE-mode US images. The features of the CNN are ensembled using the multimodal EmbraceNet model, while DN classifies the images using those features. Experimental results on the clinical data reveal that the method identified seven benign patients as being benign in three out of the five trials and six malignant patients as malignant in five out of the five trials. This indicates that the proposed method outperforms the conventional single and multimodal methods and could improve the classification accuracy of radiologists for breast cancer detection in ultrasound images.

“We were able to increase the accuracy of lesion segmentation by determining the importance of each input modal and automatically giving the proper weight,” explained Professor Chulhong Kim from POSTECH, who led the team of researchers. “We trained each deep learning model and the ensemble model at the same time to have a much better classification performance than the conventional single modal or other multimodal methods.”

Related Links:
POSTECH


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Enteral Feeding Pump
SENTINELplus
Blood Bank Refrigerator
MBR-705GR-PE
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.