Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Algorithm Beats Emergency Physicians at Detecting Fractures on X-Rays

By HospiMedica International staff writers
Posted on 14 Mar 2023

The field of diagnostic imaging has seen remarkable progress in the application of artificial intelligence (AI), notably in identifying fractures in conventional radiographs. More...

Despite notable advancements, limited research exists on detecting fractures in the pediatric population, given their unique anatomical differences and age-related changes. Failure to identify fractures in children can have serious implications on their growth and development. Now, a new study suggests that deep learning algorithms can aid in the detection of fractures in children.

Researchers at Caen University Medical Center (Caen, France) carried out a study to assess the effectiveness of an AI algorithm, based on deep neural networks, in identifying traumatic appendicular fractures in a pediatric population. The aim of the study was to compare the sensitivity, specificity, positive predictive value, and negative predictive value of various readers and the AI algorithm. The retrospective analysis involved close to 900 patients under the age of 18, who underwent non-life-threatening trauma imaging. Image specialists retrospectively analyzed radiographs of the shoulder, arm, elbow, forearm, wrist, hand, leg, knee, ankle, and foot for the study.

When it came to identifying fractures, the AI algorithm outperformed emergency physicians, but was unable to surpass experienced radiologists. The algorithm successfully predicted 174 out of 182 fractures with a sensitivity score of 95.6% and specificity of 91.6%, as compared to a sensitivity score of 98.35% for pediatric radiologists and 95.05% for senior residents. ED physicians showed a sensitivity score of merely 81.87% and junior residents notched 90.1%. In addition, the AI algorithm also detected three fractures (or 1.6%) that were initially undetected by a pediatric radiologist.

“Failure to diagnose fractures early in children may lead to serious consequences for growth,” said lead author Idriss Gasmi, with the Department of Radiology at Caen University Medical Center in France. “This study suggests that deep learning algorithms can be useful in improving the detection of fractures in children.”

Related Links:
Caen University Medical Center 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Newborn Hearing Screener
ALGO 7i
Gynecological Examination Chair
arco-matic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.