Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Improves Lung Nodule Detection on Chest X-Rays

By HospiMedica International staff writers
Posted on 08 Feb 2023

Lung nodules are common abnormal growths that typically form on the lungs due to previous lung infections but can rarely be a sign of lung cancer. More...

Chest X-ray is a common screening method used to identifying lung nodules. Artificial intelligence (AI) can serve as a powerful tool to help identify lung nodules, particularly when radiologists have a high volume of cases. Now, a pioneering, randomized controlled study evaluating the effect of AI-based software in real clinical practice has found that AI significantly improved the detection of lung nodules on chest X-rays.

In order to identify the actual effect that AI has in clinical practice, researchers at Seoul National University Hospital (Seoul, Korea) conducted a study involving 10,476 patients with an average age of 59 years, who had undergone chest X-rays at a health screening center between June 2020 and December 2021. Patients were also asked to complete a self-reported health questionnaire for identifying baseline characteristics such as age, sex, smoking status and previous history of lung cancer. Within the group of patients, 11% were current or former smokers. The researchers randomly divided the patients evenly into two groups - AI or non-AI. Radiologists aided by AI analyzed the X-rays of the first group while the X-rays of the second group were interpreted without using AI.

Solid nodules with diameters either larger than 8 millimeters or subsolid nodules with a solid portion larger than six millimeters were identified as actionable, meaning that the nodule required follow-up based on lung cancer screening criteria. The researchers identified lung nodules in 2% of the patients. Their analysis showed that the detection rate for actionable lung nodules on chest X-rays was higher when aided by AI (0.59%) as compared to without AI assistance (0.25%). They found no differences in the false-referral rates between the AI and non-AI interpreted groups.

Older age and a history of lung cancer or tuberculosis were associated with positive reports, although these and other health characteristics did not impact the efficacy of the AI system. This indicates that AI can perform consistently across different populations, including those with diseased or postoperative lungs. The researchers now plan to conduct a similar study using chest CT which will also identify clinical outcomes and efficiency of workflow.

"Our study provided strong evidence that AI could really help in interpreting chest radiography. This will contribute to identifying chest diseases, especially lung cancer, more effectively at an earlier stage," said study co-author Jin Mo Goo, M.D., Ph.D., from the Department of Radiology at Seoul National University Hospital.

Related Links:
Seoul National University Hospital 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
External Defibrillator
HeartSave Y | YA
Cardiograph Device
PageWriter TC35
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.