Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI-Based Biomarker Uses CT Scans to Predict Immunotherapy Response for Lung Cancer Patients

By HospiMedica International staff writers
Posted on 06 Jan 2023

Immunotherapy is often the first line of treatment for patients with non-small cell lung cancer, which represents 84% of all lung cancers, according to the American Cancer Society. More...

However, most patients don’t achieve durable results from immune checkpoint inhibitor (ICI) therapies, a type of immunotherapy. In a retrospective study, researchers have now discovered a new artificial intelligence (AI)-derived biomarker that uses routine imaging scans to help predict which patients with lung cancer will respond to immunotherapy. The findings not only offer guidance for patients and their physicians making treatment decisions, but can also curtail the financial burden associated with immunotherapy.

The new biomarker, quantitative vessel tortuosity (QVT), was discovered by a team of researchers from several health care systems and universities, including Emory University (Atlanta, GA, USA), and can influence tumor behavior and therapeutic resistance. Tumors appropriate the body’s machinery for building new blood vessels and redirect as much blood as possible to the tumors so they can grow faster and spread throughout the body. Compared to normal blood vessels, tumor-associated vasculature is chaotically arranged and twisted.

The researchers used AI tools to evaluate different aspects of QVT biomarkers in more than 500 cases of patients with non-small cell lung cancer before and after they were treated with ICI therapies. The researchers discovered that the tumor vasculature of patients who do not respond to ICI therapies is more twisted compared to those who do respond. They hypothesize that blood vessel twistedness causes antitumor cells to accumulate at the tumor site but fail to efficiently infiltrate the tumor, diminishing the effectiveness of immunotherapy. In future work, the researchers will seek to validate QVT biomarkers in prospective clinical trials.

“Immunotherapy only tends to benefit approximately 30% of patients. With the high expense of treatments and a 70% failure rate, we have to find better ways to predict and monitor responses to therapy,” says Anant Madabhushi, PhD, study author and professor in the Wallace H. Coulter Department of Biomedical Engineering at Emory University School of Medicine and Georgia Institute of Technology College of Engineering, and member of the Cancer Immunology research program at Winship Cancer Institute of Emory University. “When making decisions on who to treat and how to treat them, clinicians really need interpretable features. Vessel tortuosity is a novel radiomics method that uses an interpretable and intuitive AI approach to evaluate whether the tumor is responding to therapy even before more obvious changes like tumor size become apparent.”

Related Links:
Emory University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Medical Monitor
VITALMAX 4100SL
Gold Member
Electrode Solution and Skin Prep
Signaspray
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.