Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Tool Uses CT Scans to Identify Patients at Risk of Reduced Blood Flow to the Heart

By HospiMedica International staff writers
Posted on 22 Nov 2022

Blockages of the coronary arteries typically occur due to the buildup of fatty plaques. More...

This may restrict blood flow to the heart, causing chest pain, heart attacks, or even death. Identifying which arteries are at risk for reduced blood flow can help inform doctors as to which patients should be referred for subsequent tests or placement of stents. The current clinical standard for diagnosing reduced coronary arterial blood flow is called invasive fractional flow reserve (FFR). It measures the drop in pressure within the arteries and thus calculates how much each blockage limits blood flow. Meanwhile, a heart positron emission tomography (PET) scan is an imaging test that uses a radioactive tracer to look for reduced blood flow in the heart muscle.

Now, investigators at Cedars-Sinai (Los Angeles, CA, USA) and their colleagues have developed an artificial intelligence (AI) tool that uses computed tomography (CT) scans to identify patients at risk of reduced blood flow to the heart. The tool is able to accurately predict reduced blood flow both within the coronary arteries and the heart muscle. The advantage of this AI tool is that it could potentially be used in real time during routine patient visits for CT scans to help doctors determine the next step in the treatment plan.

The investigators analyzed data from 203 patients who had taken part in a previous study called the PACIFIC trial. As part of the PACIFIC trial, all patients had undergone multiple tests within a two-week interval, including coronary CT scans, invasive coronary angiography with FFR, and heart PET scans. The researchers developed an AI tool that analyzes features of the plaques on coronary CT scans, and then predicts the probability of reduced blood flow on invasive FFR and PET scans. This AI tool can be incorporated into routine analysis of coronary CT scans, according to the authors. Having this information on hand during patient visits could help doctors know which patients to refer for further testing, such as noninvasive stress testing or invasive coronary angiography. For some patients, this would mean avoiding invasive tests.

“Coronary CT angiogram is the first-line test for chest pain, as it allows us to measure the atherosclerotic plaque and narrowing,” said Damini Dey, PhD, director of the quantitative image analysis lab in the Biomedical Imaging Research Institute and professor of Biomedical Sciences and Medicine at Cedars-Sinai and corresponding author of the study. “If we can integrate CTA plaque data with stenosis with AI to predict impaired FFR, we could risk stratify patients correctly to realize the functional significance of the stenosis.”

Related Links:
Cedars-Sinai


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Electrode Solution and Skin Prep
Signaspray
X-Ray System
Leonardo DR mini III
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.