Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Algorithm Outperforms Radiologists in Measuring Cancer Spread on CT Scans

By HospiMedica International staff writers
Posted on 24 Oct 2022

Head and neck cancers and their standard treatments - surgery, radiation, or chemotherapy - carry significant morbidity. More...

They affect how a person looks, talks, eats, or breathes. Therefore, there is great interest in developing less intense treatment strategies for patients. Among the factors that determine the cancer stage are the size of the original tumor, the number of lymph nodes involved, and extranodal extension - when malignant cells spread beyond the borders of the neck lymph nodes into the surrounding tissue. Now, new research has demonstrated that artificial intelligence (AI) can augment current methods to predict the risk that head and neck cancer will spread outside the borders of neck lymph nodes.

In a study by researchers with the ECOG-ACRIN Cancer Research Group (ECOG-ACRIN, Philadelphia, PA, USA), a customized deep learning algorithm using standard computed tomography (CT) scan images and associated data contributed by patients who participated in the E3311 phase 2 trial showed promise, especially for patients with a new diagnosis of human papillomavirus (HPV)-related head and neck cancer. The E3311 validated dataset carries the potential to contribute to the more accurate staging of disease and prediction of risk. The completed E3311 phase 2 trial showed that low-dose radiation at 50 Gray (Gy) without chemotherapy following transoral surgery led to very high survival and outstanding quality of life in patients at medium risk for recurrence.

The researchers developed and validated a neural network-based deep learning algorithm based on diagnostic CT scans, pathology, and clinical data. The source was the cohort of participants in the E3311 trial who were assessed at high risk of recurrence by standard pathologic and clinical measures. In E3311, patients were assessed as high risk if there was ≥1 mm extranodal extension (ENE). These patients were assigned to chemotherapy and high-dose radiation (66 Gy) following transoral surgery.

The researchers obtained pre-treatment CT scans and corresponding surgical pathology reports from the E3311 high-risk cohort, as available. From 177 collected scans, 311 nodes were annotated: 71 (23%) with ENE and 39 (13%) with ≥1 mm ENE. The tool showed high performance in predicting ENE, substantially outperforming the reviews by expert head and neck radiologists. The team now plans to evaluate the dataset as part of future treatment trials for head and neck cancer. The algorithm will be assessed for its potential to improve upon current disease staging and risk assessment methods.

“The deep learning algorithm accurately classified 85% of the nodes as having ENE compared to 70% by the radiologists,” said Benjamin Kann, MD, who led the study for ECOG-ACRIN. “As to specificity and sensitivity, the deep learning algorithm was 78% accurate versus 62% by the radiologists.”

"Our ability to develop biomarkers from standard CT scan images is an exciting new area of clinical research and provides the hope that we will be able to better tailor treatment for individual patients, including deciding when to best use surgery and in whom to reduce the extent of treatment," added senior author Barbara A. Burtness, MD.

Related Links:
ECOG-ACRIN


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Ultrasound System
FUTUS LE
X-Ray System
Leonardo DR mini III
Portable Jaundice Management Device
Nymphaea
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.