We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Ultrasound Tool Measures Blood Flow, Images Microvasculature in the Brain

By HospiMedica International staff writers
Posted on 03 Jun 2022

To image microscopic vessels and measure blood flow in the brain, researchers use a tool called ultrasound localization microscopy. More...

It works by using microscopic bubbles circulated through the bloodstream as a contrast agent to measure the reflection of high-frequency acoustic waves passing through the body. Until recently, acquiring images this way was slow and data-intensive. Now, researchers have developed a curvelet-based algorithm to quickly measure and reconstruct whole-brain vasculature and blood flow in mouse brains. Their work could be used to enable future research into the neurovascular mechanisms underlying conditions like Alzheimer’s disease.

The approach developed by researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois Urbana-Champaign (Urbana, IL, USA) deploys ultrasound technology to produce whole-brain images of animal microvasculature in just a few seconds. The method relies on rotating and scaling many small, arbitrary curves to fit the local structure of microbubble imaging data. Combining this curvelet model with a sparsity-promoting algorithm produced an efficient and highly generalizable method for measuring blood flow and vasculature from microbubble data in mouse brains.

The method requires a very small amount of microbubble data to reconstruct blood flow and tissue microvasculature. It leverages the inherent sparsity of fast ultrasound imaging and accelerates post-processing to anywhere from 10 to 30 seconds. Microbubbles are widely used as ultrasound imaging contrast in clinical ultrasound of humans, opening the door for future clinical translation of the technology as a noninvasive assessment of stroke, vascular occlusion, and neurovascular health, according to the researchers.

“We have developed a tool that is capable of imaging whole brain microvasculature with very high spatial resolution and depth of penetration,” said Pengfei Song, an assistant professor of electrical and computer engineering and bioengineering who led the effort. “Our technology is, to the best of our knowledge, the only one that is capable of imaging whole-brain microvasculature at a very high resolution, so this is a very enticing tool for neuroscientists.”

“Many neurological diseases and disorders have a very strong correlation to vascular diseases. Down the road, our ultrasound technology may be a good candidate for a screening technology, due to the low cost, portability, and safety. There is also a strong need to develop this technology for preclinical applications," added Song.

Related Links:
University of Illinois Urbana-Champaign 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Blood Bank Refrigerator
MBR-705GR-PE
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.