Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI-Driven Algorithm Uses fMRI Scans to Detect Autism and Predict Severity

By HospiMedica International staff writers
Posted on 07 Apr 2022

Autism is one of the most common neurodevelopmental disorders but lacks objective biomarkers - telltale measurements that reveal a medical condition’s presence and sometimes severity -meaning there is no simple test for the disorder. More...

Instead, diagnosis is based on observing patients’ behaviors, which are naturally highly variable and thus make diagnosis a challenge. Researchers have now developed an algorithm that may help discern if someone has autism by looking at brain scans.

The novel algorithm, developed by researchers at Stanford University (Stanford, CA, USA) and driven by recent advances in artificial intelligence (AI), also successfully predicts the severity of autism symptoms in individual patients. With further honing, the algorithm could lead to earlier diagnoses, more targeted therapies, and broadened understanding of autism’s origins in the brain.

The algorithm pores over data gathered through functional magnetic resonance imaging (fMRI) scans. These scans capture patterns of neural activity throughout the brain. Scientists have long searched for biomarkers via fMRI scans. Yet studies to date with small populations have reported conflicting results, stemming from natural variability in patients’ brains and confounded further by differences in fMRI machines and testing methods. In deriving their image-recognition algorithms, the researchers sought to make the artificial intelligence explainable (or XAI), or understandable to human researchers.

By mapping this activity over time in the brain’s many regions, the algorithm generates neural activity “fingerprints.” Although unique for each individual just like real fingerprints, the brain fingerprints nevertheless share similar features, allowing them to be sorted and classified. In a new study, the algorithm assessed brain scans from a sample of approximately 1,100 patients. With 82% accuracy, the algorithm selected out a group of patients whom human clinicians had diagnosed with autism. The XAI algorithm alit upon three brain regions exhibiting significant differences in interconnectivity in a groupable portion of the dataset. Lending credibility to the XAI algorithm’s findings, those three brain regions have been previously implicated in autism pathology.

While the XAI algorithm performed admirably at this early stage of development, the researchers will need to improve its accuracy further still to raise brain fingerprinting to the level of a definitive biomarker. The researchers intend to explore the algorithm's efficacy in sibling studies, where one sibling has autism and the other does not, to hone the ability to detect fine-tuned, yet critical differences between potentially very similar brains. The researchers envision brain fingerprinting being used to assess the brains of very young children, perhaps as early as six months or a year old, who are at high risk of developing autism. Earlier diagnosis is critical in achieving better outcomes, with therapies proving more effective when introduced while patients are still toddler-aged versus later in childhood

“Although autism is one of the most common neurodevelopmental disorders, there is so much about it that we still don’t understand,” said lead author Kaustubh Supekar, a Stanford clinical assistant professor of psychiatry and behavioral sciences and Stanford HAI affiliate faculty. “In this study, we’ve shown that our AI-driven brain ‘fingerprinting’ model could potentially be a powerful new tool in advancing diagnosis and treatment.”

“We need to create objective biomarkers for autism,” added Supekar, “and brain fingerprints get us one step closer. We hope that the approach demonstrated in our study could diagnose autism during the window of opportunity when interventions are maximally most effective.”

Related Links:
Stanford University 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Morcellator
TCM 3000 BL
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.