We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Can Predict Need for CT in Pediatric Patients After Mild Traumatic Brain Injury

By HospiMedica International staff writers
Posted on 06 Apr 2022

Only 10% of CT scans unveil positive findings in mild traumatic brain injury, raising concerns of its overuse in this population. More...

A number of clinical rules have been developed to address this issue, but they still suffer limitations in their specificity. Machine learning models have been applied in limited studies to mimic clinical rules; however, further improvement in terms of balanced sensitivity and specificity is still needed. In a new study, researchers have found that deep neural networks can be uesd to predict the need for CT in pediatric mild traumatic brain injury.

For their study, researchers at The University of Queensland (Brisbane, Australia) applied a deep artificial neural networks (DANN) model and an instance hardness threshold algorithm to reproduce the Pediatric emergency Care Applied Research Network (PECARN) clinical rule in a pediatric population collected as a part of the PECARN study between 2004 and 2006. The DANN model was applied using 14,983 patients younger than 18 years with Glasgow Coma Scale scores ≥ 14 who had head CT reports. The clinical features of the PECARN rules, PECARN-A (group A, age < 2 years) and PECARN-B (group B, age ≤ 2 years), were used to directly evaluate the model. The average accuracy, sensitivity, precision, and specificity were calculated by comparing the model’s prediction outcome to that reported by the PECARN investigators. The instance hardness threshold and DANN model were applied to predict the need for CT in pediatric patients using fivefold cross-validation.

Based on the findings, the researchers concluded that a DANN model achieved comparable sensitivity and outstanding specificity for replicating the PECARN clinical rule and predicting the need for CT in pediatric patients after mild traumatic brain injury compared with the original statistically derived clinical rule.

Related Links:
The University of Queensland 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Ultrasound System
FUTUS LE
Critical Care Conversion Kit
Adapter+
Infrared Digital Thermometer
R1B1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.