We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Helps Radiologists Detect and Predict Type 2 Diabetes on Abdominal CT Scans

By HospiMedica International staff writers
Posted on 01 Apr 2022

A study that used fully automated deep learning to investigate patients who previously underwent colorectal cancer screening using CT colonography has found that CT biomarkers could help diagnose early stages of Type 2 diabetes and allow patients to make lifestyle changes to alter the course of this chronic disease. More...

In the study, researchers at Rutgers New Jersey Medical School (Newark, NJ, USA) used scans from 8,992 patients, including 572 who had Type 2 diabetes and 1,880 who were experiencing problems with unstable blood sugar. They used a fully automated deep learning method to segment the pancreas and yield measurements for various pancreatic biomarkers. Some extra-pancreatic biomarkers like visceral fat and atherosclerotic plaque were also included. Then they separated subjects into groups based on the time between Type 2 diabetes diagnosis and the date the CT scans were taken. The researchers performed univariable and multivariable analyses of the measurements. They included several CT-derived and clinical factors, such as the patients’ sex, age, body mass index (BMI) and BMI over 30 and determined the best set of Type 2 diabetes predictors using multinomial logistic regressions.

The results showed that patients with Type 2 diabetes had, on average, lower pancreas, muscle and liver CT attenuation values indicating higher amounts of intra-organ fat when compared to non-diabetics. The best predictors of Type 2 diabetes included standard deviation of pancreas CT attenuation, fractal dimension of the pancreas, visceral fat volume, severity of abdominal aortic plaque and BMI higher than 30. The researchers acknowledged the limitations of the retrospective use of the data set as well as the difficulty of performing the pancreas segmentation, but noted that the deep learning model had an average Dice similarity coefficient of 0.69 on selected test cases which is considered state-of-the-art performance for pancreas segmentation on non-contrast CT. The team was encouraged by the model’s performance as the final multivariate model showed pair-wise areas under the curve (AUCs) ranging from 0.79 to 0.92 between diabetics and non-diabetics.

“In the field of medical image analysis, there is a need for improvement in automated pancreas analysis and its application to clinical problems. This study was a step toward the wider use of automated methods to address clinical challenges,” said Hima Tallam, a first-year MD/PhD student at Rutgers New Jersey Medical School.

“Previous work has shown that patients with diabetes tend to accumulate more visceral and intrapancreatic fat than non-diabetics, but no significant work has been done using automated methods on a dataset of this magnitude,” said Tallam. “The multivariable analysis in this study, using both pancreatic and extra-pancreatic features, is a novel approach and has not been shown in previous work to our knowledge. We were excited to see that the multivariable model with only CT-derived and a few clinical factors achieved high AUCs without serum markers such as glucose and hemoglobin.”

“Ultimately we hope that the CT biomarkers investigated in this work might inform opportunistic diagnosis of early stages of Type 2 diabetes and allow patients to make lifestyle changes to alter the course of this chronic disease,” she added.

Related Links:
Rutgers New Jersey Medical School 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
PACS Workstation
PaxeraView PRO
Morcellator
TCM 3000 BL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.