Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New Quantitative Imaging Markers Could Improve Cancer Detection, Diagnosis and Treatment

By HospiMedica International staff writers
Posted on 24 Mar 2022

Medical imaging is an essential tool to help doctors and scientists assess the size and scope of a tumor that will be effectively removed by surgery, as well as the rate at which tumors shrink in response to medical interventions such as chemotherapy or radiation therapy. More...

Researchers are now investigating multiple avenues, including the development of quantitative imaging markers, to help improve medical imaging use in cancer detection, diagnosis and treatment.

Researchers at the Oklahoma Center of Medical Imaging for Translational Cancer Research (Norman, OK, USA) are developing quantitative imaging markers to provide an objective measure or index that can reduce subjectivity and improve consistency for medical image diagnosis using two primary types of research approaches. The first approach is to develop new investigative cutting-edge imaging modalities to expand ability of doctors to see or detect more detailed tumor internal structures such as using the advanced optical imaging modalities and technology. The second is to explore and extract more effective image features from the existing clinical imaging modalities - like CT, MRI and X-ray images - and then using artificial intelligence or machine learning models to develop new quantitative imaging markers to help reduce subjectivity and variability of cancer diagnosis and predicting cancer prognosis.

The center is beginning with four projects currently underway. In the first project, the researchers are using improved imaging modalities and quantitative markers to more clearly define the margin of a tumor to improve patient outcomes. The second project will focus on developing a 3D super-resolution optical microscope as a novel and unique method which enables researchers to better understand the intracellular pathways that nanoparticles take during transcytosis to treat tumors. The center will support the purchase of a 3D super-resolution optical microscope to allow researchers to better study nanomedicine, a branch of medicine that fuses nanotechnology and medicine for cancer treatment and prevention. The high-powered microscope will improve research in this area.

The third project aims to use artificial intelligence and machine learning with current CT imaging and pathology data to develop a model that can inform the establishment of imaging markers that can reduce subjectivity and variability of imaging results and improve patient treatment. The fourth project aims to use new investigative imaging methods, optical coherence tomography and full-field optical coherence tomography to test an exploratory cancer drug. Previous studies have shown that an anti-parasitic drug may have the potential to treat certain forms of cancer, including ovarian cancer, but more research is needed for scientists to better understand its effects.

“When some patients undergo cancer treatments, some will respond favorably while others do not. The tumor continues to grow, so if we can develop a quantitative imaging marker to predict a patient’s likelihood to respond to a certain kind of chemotherapy or treatment, we can help physicians explore an alternative approach that may be more effective,” said Bin Zheng, Ph.D., a professor and Oklahoma TSET Cancer Research Scholar in the Gallogly College of Engineering’s School of Electrical and Computer Engineering, is leading the center.

“We propose to develop a new approach to identify new quantitative image markers computed from three types of neuroimaging data using artificial intelligence, which enables us to more clearly define the margin of the tumor, predict the recovery of neurological deficits, and thus help improve surgical effect and survival of patients,” said Han Yuan, Ph.D., an associate professor in the Stephenson School of Biomedical Engineering at OU Norman, who is leading the project, “Neuroimaging Markers for Predicting Outcome of Brain Surgery.”

Related Links:
Oklahoma Center of Medical Imaging for Translational Cancer Research 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Portable Jaundice Management Device
Nymphaea
OR Table Accessory
Angular Accessory Rail
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.