We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Deep Learning Diagnostic Tool Combines Two Ultrasounds for Accurate Breast Cancer Detection

By HospiMedica International staff writers
Posted on 07 Feb 2022

A research team has developed a new diagnostic tool for breast cancer that combines two ultrasounds. More...

The breast cancer detecting deep learning model developed by researchers at the Pohang University of Science and Technology (POSTECH Pohang, South Korea) combines grayscale B-mode and strain elastography (SE) ultrasound imaging.

Ultrasound imaging is much safer and cheaper as compared to other diagnostic methods like mammography, X-ray, or MRIs and also allows in-depth observation of tissues. The grayscale B-mode ultrasound that clearly shows the lesion structure and the strain elastography ultrasound that shows the tumor density are commonly used for classification of breast cancer. Hence, the research team combined the two to maximize their strengths.

The study involved 85 patients with breast cancer confirmed by biopsy, including 42 with benign lesions and 43 with malignancies. The researchers separately trained two deep neural network models, AlexNet and ResNet, on combined 205 grayscale and SE images from 67 patients with benign and malignant lesions. The team then configured the two deep learning models to work as an ensemble and tested it on a dataset of 56 images from the remaining 18 patients. The researchers found that the deep learning ensemble model identified diverse features in the two different ultrasound images and successfully detected the presence of malignant tumors.

The deep learning ensemble model demonstrated an accuracy of 90% which was higher than the individual models (84% each) as well as the model that was trained using grayscale B-mode or SE imaging (grayscale 77%, SE 85%) alone. Interestingly, the individual model misclassified five patients while the ensemble model missed only two. So far, ultrasound imaging has been used in breast cancer classification although it was affected by a shortage of radiologists and poor imaging quality. The deep learning model developed by the researchers has been shown to improve the accuracy of breast cancer diagnosis.

“Using this deep learning model can achieve superior detection efficiency since it can accurately classify breast cancers in ultrasound images,” said Professor Chulhong Kim from the Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering who led the study.

Related Links:
POSTECH 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Pulmonary Ventilator
OXYMAG
Radiology System
Riviera SPV AT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.