We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Tool That Identifies Patterns on CT Scans Offers New Promise for Treating Patients with Small Cell Lung Cancer

By HospiMedica International staff writers
Posted on 26 Nov 2021

Researchers have used artificial intelligence (AI) to identify patterns on computed tomography (CT) scans that offer new promise for treating patients with small cell lung cancer. More...

The researchers at the Center for Computational Imaging and Personalized Diagnostics (CCIPD) at Case Western Reserve University (Cleveland, OH, USA) identified a set of radiomic patterns from CT scans taken before treatment that allow them to predict a patient’s response to chemotherapy. They also examined the association between AI-derived image features with longer-term outcomes.

Small cell lung cancer (SCLC) represents about 13% of all lung cancers, but grows faster and is more likely to spread than non-small cell lung cancer, according to the American Cancer Society. And while a lot of AI research has been performed on non-small cell lung cancer, little work has been done on SCLC. Small cell lung cancer patients can be challenging to treat. During their efforts to ascertain which SCLC patients would respond to treatment, the researchers found that computationally extracted textural patterns of the tumor itself - as well as the region surrounding it - were found to be different in SCLC patients who responded well to a certain chemotherapy, compared to those who did not.

Further, patterns were revealed by the AI that corresponded to patients who ended up living longer after treatment compared to those who did not. Finally, the AI revealed that there was notably more heterogeneity, or variability, in the scanned images of patients who did not respond to chemo and had poorer chances of survival. These findings from a retrospective study now sets the stage for prospective AI driven clinical trials for treatment management of SCLC patients. Their findings are significant because chemotherapy remains the backbone of systemic treatment, the researchers said. The study is part of broader research conducted at CCIPD to develop and apply novel AI and machine-learning approaches to diagnose and predict therapy responses for various diseases and indications of cancer, including breast, prostate, head and neck, brain, colorectal, gynecologic and skin cancer.

“Our efforts are aimed at reducing unnecessary chemotherapeutic treatments and thus reducing patient suffering,” said the study’s co-lead author Mohammadhadi Khorrami, a CCIPD researcher and PhD student in biomedical engineering at Case Western Reserve. “By knowing which patients will benefit from therapy, we can decrease ineffective treatments and increase more aggressive therapy in patients who have suboptimal or no response to the first-line therapy.”

Related Links:
Case Western Reserve University 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
OR Table Accessory
Angular Accessory Rail
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.