We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Ultrafast Timing Enables Reconstruction-Free PET Imaging

By HospiMedica International staff writers
Posted on 18 Nov 2021
An experimental technique based on Cherenkov photon detection could create cross-sectional images without the need for tomographic reconstruction, according to a new study.

Under development at the University of California Davis (UCD; USA), Hamamatsu Photonics (Japan), the University of Fukui (Japan), and other institutions, the new technique is based on the theory that if detected fast enough, back-to-back annihilation of photons can be directly localized in 3D space using time-of-flight information without tomographic reconstruction. More...
Until now this has not been possible, as photon detectors were too slow to precisely pinpoint their location based on time shifts.

The researchers successfully developed new Cherenkov photon detector technology that when combined with a convolutional neural network (CNN) for timing estimation, resulted in an average timing precision of 32 ps (corresponding to a spatial precision of 4.8 mm), which they consider is sufficient to produce cross-sectional images of a positron-emitting radionuclide directly from the detected coincident annihilation photons, without the need for further tomographic reconstruction algorithms. The study was published on October 14, 2021, in Nature Photonics.

“We're literally imaging at the speed of light, which is something of a holy grail in our field. Images can also be created more quickly with this method, potentially even in real time during the PET scan, as no after-the-fact reconstruction is needed,” concluded senior author Professor Simon Cherry, PhD, of UCD, and colleagues. “This new discovery involves a compact equipment setup, and could lead to inexpensive, easy and accurate scans of the human body using radioactive isotopes.”

In positron emission tomography (PET) scans, molecules tagged with trace amounts of a radioactive isotope are injected in the body. The unstable isotope emits positrons as it decays; whenever one of these positrons encounters an electron in the body, they annihilate each other and simultaneously give off two annihilation photons. Tracking the origin and trajectory of the photons creates an image of the tissues tagged with isotopes. But till now, tomographic reconstruction was required, as the detection process was too slow.

Related Links:
University of California Davis
Hamamatsu Photonics
University of Fukui



Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Autoclave
Advance
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.